Review Article

Emerging mould infections: Get prepared to meet unexpected fungi in your patient

Sarah Delli`ere1, Olga Rivero-Menendez2, Cécile Gautier3, Dea Garcia-Hermoso3, Ana Alastrey-Izquierdo 2 and Alexandre Alanio1,3,4,∗

1Université de Paris, Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Paris, France, 2Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, 3Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Paris, France and 4Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA

∗To whom correspondence should be addressed. Alexandre Alanio, MD, PhD, Molecular Mycology unit, Institut Pasteur, 25 rue du Dr Roux 75724 Paris Cedex 15. Tel: +33140613255; Fax: +33145688420; E-mail: alexandre.alanio@pasteur.fr

Received 18 December 2018; Revised 1 March 2019; Accepted 5 April 2019; Editorial Decision 29 March 2019

Abstract

Invasive fungal diseases are increasing issues in modern medicine, where the human immunodeficiency virus (HIV) pandemic and the wider use of immunosuppressive drugs generate an ever-growing number of immunocompromised patients with an increased susceptibility to uncommon fungal pathogens. In the past decade, new species have been reported as being responsible for disseminated and invasive fungal diseases in humans. Among them, the following genera are rare but seem emerging issues: Scopulariopsis, Hormographiella, Emergomyces, Westerdykella, Trametes, Actinomucor, Saksenaea, Apophysomyces, and Rhizidhysterion. Delay in diagnosis, which is often the case in these infections, jeopardizes patients’ prognosis and leads to increased mortality. Here we summarize the clinical and biological presentation and the key features to identify these emerging pathogens and we discuss the available antifungal classes to treat them. We focused on Pubmed to recover extensively reported human invasive cases and articles regarding the nine previously cited fungal organisms. Information concerning patient background, macroscopic and microscopic description and pictures of these fungal organisms, histological features in tissues, findings with commonly used antigen tests in practice, and hints on potential efficient antifungal classes were gathered. This review’s purpose is to help clinical microbiologists and physicians to suspect, identify, diagnose, and treat newly encountered fungi in hospital settings.

Key words: invasive fungal disease, emerging fungi, Emergomyces, Scopulariopsis, Hormographiella, Actinomucor, Apophysomyces, Rhizidhysterion, Saksenaea, Trametes, Westerdykella.

Introduction

Invasive fungal infections (IFIs) are increasing due to the growing use of immunosuppressive chemotherapy and the persistence of the AIDS pandemic in specific areas. In addition, the improvement of diagnostic means may concur to that trend. Candida spp. and Cryptococcus spp. are the most frequent isolated yeasts in human IFIs, while Aspergillus spp., Fusarium spp. and Scedosporium spp. are the most isolated moulds.1 However, the part attributed to other fungal organisms is increasing and emerging uncommon species responsible for IFIs are more frequently described around the world. In this review, we describe unusual emerging moulds responsible for IFIs with a focus on the fungus—morphology, environmental niche, location, mode of transmission—and on the infection (clinical presentation and treatments available). These genera and species where selected...
for their scarcity and their recent emergence during the past two decades.

Actinomucor spp.

The genus *Actinomucor* belongs to the order *Mucorales* and is commonly isolated from soil, from the rhizosphere of plants and from mouse and rabbit dung.² *Actinomucor elegans* is involved in traditional fermentation of sufu, a cheese-like soybean very common in Asia.³ The only species of the genus *Actinomucor* is *Actinomucor elegans.* divided in var. *elegans,* var. *kuwaitiensis,* and var. *taiwanensis,* considered synonyms (http://www.indexfungorum.org). *A. elegans* has white to cream floccose cultures growing rapidly at 30°C. Microscopically they are verticillately branched sporangiophores with terminate sporangia in various lengths. The smooth or spiny sporangia wall encloses spherical to ovoidal sporangiospores.⁴ Sequencing of the ITS1-5.8S-ITS2 region of rDNA is currently used to identify accurately species of this genus.

Only five cases of superficial and invasive mucormycosis involving *Actinomucor* have been described in the literature since 2001. Two cases were associated with maxillary sinusitis in an immunocompetent 11-year-old female⁵ and in an allogeneic transplant patient with a lymphoblastic lymphoma;⁶ a third case was a necrotic foot lesion in a diabetic patient.⁷ Disseminated infection was diagnosed in two cases following a trauma during combat in Iran⁸ and in a diabetic patient with refractory aplastic anemia.⁹ Out of five patients, two were cured with surgery debridement and amphotericin B administration,⁵,⁶ two died despite debridement and broad spectrum antifungal,⁸,⁹ and one was lost to follow-up.⁷

Apophysomyces mexicanus

Among the subphylum *Mucoromycotina* the genus *Saksenaea* comprises three species: *S. vasiformis* species complex, *S. erythrospora* and *S. oblongispora.*¹⁰ These cosmopolitan mucoralean organisms produce white-gray expanding colonies with a maximum temperature of 44°C. Sporulation may be promoted by subculturing the fungus on water agar 1% or Czapek medium at 3⁰ to 37⁰C. The multispored flask-shaped sporangium is characteristic of the genus. Species recognition is based mainly on differences in length of sporangiophores and sporangia; shape and size of sporangiophores and maximum growth temperatures. Accurate species identification also relies on sequencing of the ITS1-5.8S-ITS2 region and the D1-D2 domains of the large-subunit ribosomal DNA. Mucormycosis due to *Saksenaea* spp. have been mostly associated with cutaneous infections in healthy and immunocompetent subjects following traumatic implantation with soil and water contamination, inhalation of spores, insect stings, or the use of indwelling catheters.¹⁷,¹⁸ Up to now, nine cases of the newly described species *S. erythrospora* have been reported. The majority of infections were observed in immunocompetent individuals (except for one diabetic patient)¹⁹ and were associated with trauma (sailing accident, combat trauma, intramuscular injection or application of medicated adhesive tape),¹⁹–²¹ medical tourism activities (esthetical surgery) or invasive rhinosinusitis.²²,²³ Clinical presentations included necrotic or ulcerative skin and soft tissue lesions, necrotizing fasciitis, or orbital cellulitis. No specific management has been recommended in recent guidelines for *Saksenaea* sp. compared to other mucormycosis. As first line therapy, a combination of surgical debridement when feasible and the administration of a lipid formulation of amphotericin B, which offers a better chance of survival to the patient, have been recommended.¹⁶,²⁴

Hormographiella aspergillata

H. aspergillata is the asexual form of *Coprinopsis cinerea,* a common basidiomycete found in compost.²⁵ This fungus has been
Table 1. Macroscopic and microscopic features of emerging fungal species in IFIs.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Description in culture</th>
<th>Image</th>
<th>Description in culture</th>
<th>Image</th>
<th>Description in tissue</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinomucor spp.</td>
<td>White to cream floccose colonies</td>
<td>Fig. 1A</td>
<td>Verticillately branched sporangiophores; smooth or spiny sporangia</td>
<td>Fig. 1B</td>
<td>Intravascular and parenchymal invasive, ribbon-like, branching fungal elements characteristics of the member of Mucorales species</td>
<td>8, 9</td>
</tr>
<tr>
<td>Apophysomyces mexicanus</td>
<td>White to gray rapid growing colonies</td>
<td>ND</td>
<td>Verrucose-walled sporangiophores and apophyse</td>
<td></td>
<td>Wide coenocytic mycelia</td>
<td>11</td>
</tr>
<tr>
<td>Saksenaea erythrospora</td>
<td>White to gray expanding colonies</td>
<td>19, 21</td>
<td>Multispored flask-shaped sporangium</td>
<td>Fig. 1F</td>
<td>Broad asceptate hyphae with wide angle branching</td>
<td>19, 21</td>
</tr>
<tr>
<td>Hormographiella aspergillata</td>
<td>White to cream cotton-like colonies</td>
<td>27, 28</td>
<td>Septate conidiophores/clusters of smooth-walled hyaline and cylindrical arthroconidia</td>
<td>27, 28</td>
<td>Hyaline hyphae with acute branching</td>
<td>27, 28</td>
</tr>
<tr>
<td>Trametes polyzona</td>
<td>White and cottony colonies</td>
<td>31</td>
<td>Hyaline septate hyphae and rectangular arthroconidia</td>
<td></td>
<td>Septate fungal hyphae Neutrophil tissue infiltration</td>
<td>31</td>
</tr>
<tr>
<td>Emergomyces africanaus</td>
<td>Mycelial phase (25–30° C) Light brown wrinkled colony with powdery segment Yeast phase (37° C) Smooth cream-to-beige color colony</td>
<td>31</td>
<td>Hyaline septate hyphae and rectangular arthroconidia</td>
<td></td>
<td>Septate fungal hyphae Neutrophil tissue infiltration</td>
<td>31</td>
</tr>
<tr>
<td>Rhytidhysteron rufulum</td>
<td>Dark green to grey velvety colonies</td>
<td>Fig. 1E</td>
<td>Septate irregularly branched dematiaceous hyphae Ascomata apothecoid, Ascospores transversely 3-septate, with no longitudinal septa</td>
<td>39, 41</td>
<td>Thick-walled brown, spherical, sclerotic bodies with or without septation</td>
<td>39, 41</td>
</tr>
<tr>
<td>Scopulariopsis (Microascus) spp.</td>
<td>Powdery pale brown colonies</td>
<td>Fig. 1G</td>
<td>Septate hyphae, annellidic conidiogenous cells in chains and smooth or rough-walled subglobose conidia with a flattened base.</td>
<td>Fig. 1H</td>
<td>Irregularly shaped hyphae with swollen thick-walled structure Angioinvasive Necrotic tissue formation May be melanized septate hyphal angioinvasive</td>
<td>43, 45</td>
</tr>
<tr>
<td>Westerykella dispersa</td>
<td>Dark-brown colonies with dark globose cleistothecium</td>
<td>Fig. 1I</td>
<td>Reddish-brown, smooth, cylindrical to slightly reniform ascospores Pycnidia with ostioles and subglobose to pyriform, hyaline conidia</td>
<td>Fig. 1J</td>
<td>Fig. 1K</td>
<td>48</td>
</tr>
</tbody>
</table>

ND, not described.

reported in 15 cases in the past two decades and majorly arises in neutropenic patients who underwent allogeneic stem cell transplantation as part of acute leukemia treatment. Clinical presentation is an invasive pulmonary infection in all cases but one has been described to disseminate to the central nervous system (CNS), eyes, skin, sinuses, and blood (endocarditis). Diagnosis is driven by the presence of nodular infiltrates and the halo sign on pulmonary computed tomography (CT). Galactomannan is constantly negative and bronchoalveolar lavage (BAL) is always negative Table 2). Thorascoscopic surgery and lung biopsy allowed to have final diagnosis in all cases allowing the growth of *H. aspergillata* in all cases in which it was performed. The morphological characteristics of the fungus are described in Table 1. This fungus responds poorly to all antifungal and mortality rate of all cases published is 73%. *In vitro* susceptibility shows intrinsic resistance to echinocandins and variable minimal inhibitory concentration (MIC) to second generation azoles and amphotericin B (AmB), but these data cannot be translated into clinical practice without caution. The addition of nebulized liposomal-AmB (L-AmB) to IV L-AmB is the treatment combination that showed the best improvement of a patient condition so far.
Trametes polyzona

Trametes polyzona is a basidomycete that belongs to the order *Polyporales*. It is a saprotrophic fungi that has been isolated in Africa, South and Central America, and Asia being particularly prevalent in tropical countries and playing a major role as a decomposer in the tropical forest ecosystem. The first report in human infections was in 2016 from two cases of pneumonia in Reunion island. Patients suffered from chronic debilitating diseases that lead to fungal colonization of the respiratory tract. They were initially treated with caspofungin or fluconazole and later with liposomal amphotericin B. Histopathological confirmation was obtained in one case. The isolates recovered from both cases did not sporulate in standard culture and were identified by sequencing informative targets. Antifungal susceptibility testing revealed low MICs (<0.5 mg/l) to amphotericin B and azoles but high MICs (>8 mg/l) for caspofungin and terbinafine.
Table 2. Results of routinely used biological fungal markers in invasive fungal disease of emergent fungi.

<table>
<thead>
<tr>
<th></th>
<th>β-D-glucan</th>
<th>GM serum</th>
<th>GM BAL</th>
<th>Urine Histoplasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of positive patient (n)</td>
</tr>
<tr>
<td>Actinomucor spp.</td>
<td>NA</td>
<td>1 (1)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Apophysomyces mexicanus</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Saksaenae erythrospora</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hormographiellaaspergillata</td>
<td>0 (1)</td>
<td>0 (7)</td>
<td>0 (4)</td>
<td>NA</td>
</tr>
<tr>
<td>Trametes polyzona</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Emergomyces africanus</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Rhytidhysteron rufulum</td>
<td>NA*</td>
<td>NA**</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Scopulariopsis (Microascus) spp.</td>
<td>0 (1)</td>
<td>0 (2)</td>
<td>0 (1)</td>
<td>NA</td>
</tr>
<tr>
<td>Westerdykella dispersa</td>
<td>NA</td>
<td>0 (1)</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Ag, antigen; BAL, broncho-alveolar lavage; GM, galactomannan; NA, no assessment.
*1(1) in an unpublished case in 2018; **0 (1) in an unpublished case in 2018.

Emergomyces spp.

For more than 50 years, the genus *Emmonsia* was known to cause a rare disease called adiaspiromycosis. While the incidence of adiaspiromycosis does not seem to increase, an outbreak of *Emmonsia*-like fungi has been causing severe disseminated infection in South African human immunodeficiency virus (HIV) patients in the past 10 years. Considering that these fungi do not produce adiaspores in tissue, display thermal dimorphism and generate disseminated disease in immunocompromised patients, a new genus called *Emergomyces* has been proposed supported by molecular investigations. *Emergomyces* accommodates former *Emmonsia pasteuriana*, and the new species *Emergomyces africanus* responsible for the South African outbreak and *Emergomyces orientalis* only described in a case in China. *Emergomyces pasteuriana*, *Emmonsia pasteuriana*, has been reported in five cases since 1998, while *E. africanus* has been responsible for at least 86 reported cases in South Africa since 2008. Both present as a disseminated infections with skin lesions in AIDS patients with a CD4 cell count <100/mm³. Clinical presentation of *E. africanus*, whose infection has been recently well described, associates fever, weight loss, anemia, and widespread nonspecific skin lesions from erythematous papules to ulcers and crusted plaques. Infection is fatal in about 30% of cases. Dissemination is documented by lesions on chest X-ray resembling tuberculosis and elevated liver enzymes. Culture of skin biopsy isolates the fungus in all cases, whose characteristics are described in Table 1. Isolation of the fungus from blood or bone marrow is significantly associated with death. Despite the lack of guidelines on the management of emergomycosis, the fungus seems to respond well and rapidly to amphotericin B deoxycholate for 14 days followed by itraconazole maintenance therapy.

Rhytidhysteron rufulum

Rhytidhysteron rufulum is a melanized ascomycete genus that has been recognized for many years as a plant pathogen. Recent molecular studies transferred the genus from *Patellariaceae* to the *Hysteriaceae* family. *Rhydhysteron rufulum* was first isolated from a human infection in 2009 in a case of chromoblastomycosis in India. Seven more phaeophyphomycosis cases have been described in the literature since then. Five were immunocompetent patients, one renal transplant and two diabetic patients. Diagnosis was always based on the isolation of the fungus and sequencing since the isolates do not sporulate in culture. All cases were found in the lower limbs. Patient’s treatment included itraconazole alone or in combination with terbinafine and/or lesion excision. One case was also treated with amphotericin B in addition to lesion excision, itraconazole and terbinafine. Four of the cases got cured, one (chromoblastomycosis) did not, and three patients were lost to follow-up.

Scopulariopsis (Microascus) spp.

The ascomycetous genus *Scopulariopsis* includes hyaline and melanized species that are ubiquitous and found in soil, air, wood, dung, and animal remains. Most common species involved in human pathogenicity are *Scopulariopsis brevicaulis*, *Scopulariopsis gracilis*, *Scopulariopsis brumptii* (recently
renamed as Microascus gracilis and Microascus paisii respectively), Scopulariopsis candida, Microascus cirrosus and Microascus cinereus. They are occasionally involved in human infections ranging from superficial infections (onychomycosis, keratitis, otomycosis) to invasive infections with high mortality rates. The latter include endocarditis, sinusitis, brain abscess, pulmonary, deep cutaneous and disseminated cases with poor outcome, mostly seen in immunocompromised patients.

Scopulariopsis spp. grows well on routine laboratory media and are recovered and identified easily from clinical samples (Table 1). Fungal biological markers are also usually negative in disseminated infection (Table 2). Infections by Scopulariopsis spp. lack recommendation guidelines related to high in vitro MICs (minimum inhibitory concentrations) to all current antifungal agents. Furthermore, many cases report discrepancies between MIC in vitro and clinical response suggesting that some antifungals, mainly amphotericin B and voriconazole, may be active in patients, as observed in fusariosis with voriconazole. Surgery combined with antifungal is usually advised to give patients the highest chance of survival.

Westerdykella dispersa

Westerdykella spp. are saprobic fungi with a worldwide distribution. It belongs to the family Sporomiaceae (order Pleosporales). It has been described as the causative agent of systemic infection in dogs. Two cases of human infections have been reported until now. Sue et al. reported the infection in a neutropenic patient with acute lymphoblastic leukemia. Infectious complication around a peripherally inserted central catheter occurred. The patient was successfully treated with a combination of voriconazole and liposomal amphotericin B in addition to repeated debrideaments. The second case was isolated from a critically burned patient. Three other isolates were recovered from lower extremity wounds or tissue in the United States identified as Westerdykella, one of them as W. dispersa and the other two as W. reniformis. However, their virulence in these cases has not been acknowledged.

Discussion

New mould species are increasingly reported as responsible for IFIs in humans. Some belong to newly described genus such as Emergomyces spp., but some are well-known fungi never encountered in human disease before like H. aspergillata. On one hand, the use of antifungal therapy necessarily gives rise to the emergence of naturally resistant species. In addition, antifungal prophylaxis with azoles in at-risk patients has been shown to select for resistant species such as Mucorales or Scopulariopsis spp. In patients empirically treated with echinocandins, the most common antifungal class for the treatment of candidemia, invasive mould infection may also arise. New classes of antifungals are needed to treat and prevent these naturally resistant emerging species in immunocompromised patients. On the other hand, introduction and improvement of biomolecular techniques to identify mould and yeast species may create a reporting bias, since these techniques, following recommendations on fungal barcoding, are able to detect more species that are misidentified by classical methods previously used.

In the light of new diagnostic methods, including fungal biomarkers and polymerase chain reaction (PCR) techniques, microscopic identification skills tend to be overlooked. However, a thorough direct examination of patient samples not only can catch and orientate towards a fungal group (yeast, hyalohyphomycetes, Mucorales) but also remains the fastest result to help initiate early treatment as a mean to improve prognosis. Furthermore, a direct observation of fungal elements in tissue is a strong evidence to prove an invasive fungal infection according to the EORTC criteria. Considering that infections by emerging fungi are difficult cases to diagnose, they may therefore be under reported.

Acknowledgments

We thank Françoise Dromer and Stéphane Bretagne for their continuous support.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and the writing of the paper.

References

