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ABSTRACT Echinocandins (caspofungin, micafungin, anidulafungin), targeting �-1,3-
glucan synthesis of the cell wall, represent one of the three currently available anti-
fungal drug classes for the treatment of invasive fungal infections. Despite their lim-
ited antifungal activity against Aspergillus spp., echinocandins are considered an
alternative option for the treatment of invasive aspergillosis (IA). This drug class ex-
hibits several advantages, such as excellent tolerability and its potential for synergis-
tic interactions with some other antifungals. The objective of this review is to dis-
cuss the in vitro and clinical efficacy of echinocandins against Aspergillus spp.,
considering the complex interactions between the drug, the mold, and the host. The
antifungal effect of echinocandins is not limited to direct inhibition of hyphal
growth but also induces an immunomodulatory effect on the host’s response. More-
over, Aspergillus spp. have developed important adaptive mechanisms of tolerance
to survive and overcome the action of echinocandins, such as paradoxical growth at
increased concentrations. This stress response can be abolished by several com-
pounds that potentiate the activity of echinocandins, such as drugs targeting the
heat shock protein 90 (Hsp90)-calcineurin axis, opening perspectives for adjuvant
therapies. Finally, the present and future places of echinocandins as prophylaxis,
monotherapy, or combination therapy of IA are discussed in view of the emergence
of pan-azole resistance among Aspergillus fumigatus isolates, the occurrence of
breakthrough IA, and the advent of new long-lasting echinocandins (rezafungin) or
other �-1,3-glucan synthase inhibitors (ibrexafungerp).

KEYWORDS Aspergillus, anidulafungin, calcineurin, caspofungin, heat shock protein
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Molds of the genus Aspergillus (particularly, Aspergillus fumigatus) are the causal
agents of invasive aspergillosis (IA), a life-threatening infection affecting immu-

nocompromised hosts, such as hematological cancer or transplant patients. The current
antifungal armamentarium for the treatment of IA is limited to three antifungal drug
classes. Fungicidal drugs, such as the triazoles (e.g., voriconazole, posaconazole, or
isavuconazole) and the polyenes (amphotericin B formulations) represent the first-
choice treatments, whereas the fungistatic echinocandins (caspofungin, anidulafungin,
and micafungin) represent an alternative and are only marginally used as monotherapy
(1, 2). However, use of echinocandins is gaining interest because of the emergence of
acquired azole resistance in A. fumigatus isolates and the limitations related to drug
interactions and/or toxicity with azoles and amphotericin B. The aim of this review is to
discuss the role of the echinocandins in the treatment of IA, from the mechanistic point
of view of drug-pathogen-host interactions to clinical application and perspectives.

ECHINOCANDINS AGAINST ASPERGILLUS
Mechanisms of action. The echinocandin drugs are lipopeptides derived from

fungal secondary metabolites. This antifungal class currently consists of three commer-
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cially available drugs, i.e., caspofungin, micafungin, and anidulafungin; and a novel
molecule with a prolonged half-life, rezafungin (CD101), is currently in phase 3 evalu-
ation. All echinocandins are available for parenteral (intravenous) administration only.
Their antifungal activity relies on inhibition of the biosynthesis of �-1,3-glucan, one of
the major polysaccharides of the cell wall in ascomycetous fungi, by targeting �-1,3-
glucan synthase (encoded by fks1) in a noncompetitive way (3). �-1,3-Glucan is an
important structural component of the cell wall, which plays an essential role in
protection from the environment, containment of osmotic pressure, morphogenesis of
hyphae, and invasive properties in host tissues (4). In addition to its structural role,
�-1,3-glucan is an important trigger of the innate immune system, which is recognized
by the Dectin-1 receptor at the surface of host immune cells (5). The concept that the
antifungal effect of echinocandins may also result from an immunopharmacological
effect emerged recently. Lamaris et al. (6) showed that caspofungin exposure was
associated with a concentration-dependent increase in �-1,3-glucan exposure in the
cell wall of A. fumigatus isolates. This effect peaked at a caspofungin concentration of
0.06 �g/ml, with a subsequent decline in �-1,3-glucan exposure at higher concentra-
tions. Preexposure of A. fumigatus isolates to caspofungin 0.06 �g/ml also resulted in
increased hyphal damage induced by polymorphonuclear neutrophils (PMNs) in vitro
and increased expression of Dectin-1 by PMNs, which supports the role of echinocan-
dins in triggering the host’s immune response against the mold (6). Moretti et al. (7)
observed different host response patterns in terms of PMN recruitment and cytokine
production in experimental models of IA with escalating doses of caspofungin. Exper-
iments with knockout mice for different innate immune receptors suggested modula-
tory roles of Dectin-1, TLR-2, TLR-4, and TLR-9 on the net activity of caspofungin.

Whereas echinocandins are fungicidal against the most relevant pathogenic yeasts,
such as Candida spp., they are fungistatic against Aspergillus spp. and some other
pathogenic filamentous fungi. In vitro, echinocandins induce a hyphal growth arrest
with turgescence and blunting of hyperbranched hyphae (Fig. 1A). This effect is usually
observed at low concentrations (�0.03 �g/ml) for most Aspergillus spp., thus defining
a minimal effective concentration (MEC), instead of an actual MIC.

Tolerance. The ability of the fungus to maintain residual growth above the thresh-
old of inhibition of the drug is referred to as tolerance. This is an epigenetic phenom-
enon, which, contrary to resistance, is not the result of acquired mutations but of
mechanisms of stress response. Another expression of the ability of Aspergillus spp. to
generate compensatory mechanisms of adaptation to the stress induced by echino-
candins is the paradoxical effect (PE) (8). This phenomenon refers to decreased activity
of the drug and recuperation of fungal growth at increasing concentrations above a
certain threshold (Fig. 1B). It is comparable to the Eagle effect that was initially
described for antibacterial drugs. The PE was first observed in 1988 in Candida spp.
yeasts with the experimental echinocandin drug cilofungin and described in more
detail by Stevens et al. (9, 10) with caspofungin. Subsequently, the phenomenon was
reported for different Aspergillus species (11, 12).

The PE results from the activation of intracellular signaling pathways, which leads to
cell wall remodeling with increases in the chitin content to compensate for the loss of
�-1,3-glucan. It is species, strain, and drug specific (13). A PE can be observed in �60%
to 80% of A. fumigatus clinical isolates, occurring mainly with caspofungin, whereas this
phenotype is usually absent with micafungin and anidulafungin or occurs only at
higher concentrations (11, 12, 14). The PE has also been reported among isolates of
Aspergillus flavus, Aspergillus terreus, and Aspergillus niger (11, 15, 16).

The mechanisms behind this phenomenon were first studied in yeasts, revealing
roles for protein kinase C, the high osmolarity glycerol response, and the calcineurin
pathway (17–19). In A. fumigatus isolates, the PE can be suppressed by targeting
different steps of the calcineurin pathway (14). The initial trigger of the PE consists of
the entry of calcium (Ca2�) and increase in intracellular Ca2�, which binds to calmod-
ulin and activates calcineurin by phosphorylation at its serine-proline-rich region
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concomitantly with increased expression of calmodulin and calcineurin (20, 21). Ca2�

deprivation, which can be achieved by Ca2� chelators (BAPTA) or Ca2� channel
blockers (verapamil), results in abolition of the PE in A. fumigatus isolates (21). Inter-
estingly, caspofungin exposure at PE concentrations resulted in a more important
increase in cytosolic Ca2� compared to that with micafungin, which does not induce
PE, illustrating the drug specificity of the PE (21).

Activated calcineurin then dephosphorylates the transcription factor CrzA that
moves to the nucleus and binds to specific promoter regions (calcineurin-dependent
reporter elements) of the chitin synthase-encoding genes (chsA, chsC, chsG, and csmB)
(22). Both calcineurin and CrzA are necessary to increase expression of chitin synthases
and chitin content of the cell wall after caspofungin exposure (14, 22, 23). The cnaA and
crzA deletion mutants also exhibit decreased �-1,3-glucan in the cell wall and lack the
PE in response to caspofungin (23).

Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are essential molecular chaperones
that are supposed to control the calcineurin pathway in this response. A certain level
of Hsp90 is required to generate the PE, which can be abolished by substitution of the
native hsp90 promoter, by Hsp90-inhibitory drugs (geldanamycin), or by compromising
Hsp90 function with acetylation-mimetic mutations (K27A) or lysine deacetylase inhib-
itors (trichostatin A) (24, 25). Affecting the interaction between the chaperones Hsp90
and Hsp70 by mutation of the Hsp70 EELD C-terminal domain also results in suppres-
sion of the PE (26). Deletion of the Hsp90-Hsp70 organizing protein (Hop, correspond-
ing to StiA in A. fumigatus) results in hypersensitivity to caspofungin (26). Thus, Hsp90
and Hsp70 seem to act in concert to control the calcineurin pathway in caspofungin
stress response. However, there may be other downstream effectors in the complex
network of Hsp90. Very recently, the mitochondrial respiratory chain was shown to play
a role in the PE, and activation of mitochondria in response to caspofungin was
dependent on Hsp90 (27).

FIG 1 Tolerance of Aspergillus fumigatus to caspofungin. (A) Microscopic observation of A. fumigatus isolates after 24 h growth at 37°C in
liquid RPMI 1640 medium in the absence of drug and in the presence of caspofungin 1 �g/ml. (B) Visualization of the paradoxical effect
of caspofungin on A. fumigatus isolates. Pictures were taken after 5 days of growth at 37°C on glucose minimal medium agar plates
supplemented with caspofungin at increasing concentrations (0, 1, 2, and 4 �g/ml).
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Analyses of the intracellular trafficking of the different actors of the Hsp90-
calcineurin pathway showed that calcineurin and calmodulin localized at the hyphal
tips and septa and that Hsp90 moves from the cytosol to the cell wall and sites of septa
formation in the presence of caspofungin (27–30). Physical interaction between Hsp90
and calcineurin has been demonstrated in yeasts (31). However, the network of
interactions of these stress proteins at the sites of cell wall regeneration remains to be
elucidated.

In addition to the calcineurin pathway, a role of the cell wall integrity (CWI) pathway
was recently highlighted. Deletions of the CWI MAPK gene mpkA and its downstream
transcription factor rlmA resulted in loss of the PE (22). However, this pathway does not
seem to play a role in PE via overexpression of chitin synthases. On the contrary, mpkA
had a repressive effect on these genes but was also shown to positively impact the
expression of other cell wall components, such as �-1,3-glucan or �-1,3-glucans (22, 32).
Indeed, Loiko and Wagener (33) demonstrated that the key adaptive mechanism in PE
does not seem to be related to the increased expression of chitin synthases but rather
to the recovery of �-1,3-glucan synthase activity. Synthesis of �-1,3-glucan takes place
at the cell membrane by the �-1,3-glucan synthase complex, consisting of a catalytic
subunit, Fks1, and a regulatory subunit, RhoI. The crucial role of this complex in the PE
was also supported by a recent study showing distinct localization patterns at low
(non-PE) and high (PE) caspofungin concentrations (34). Under caspofungin exposure,
Fks1 moves from the hyphal tips to vacuoles. However, continuous exposure to high
caspofungin concentrations (4 �g/ml) will induce relocalization of Fks1 to the tips along
with the phenotypic appearance of PE, which does not occur at lower concentrations.
RhoI remains at the hyphal tips, where it is essential for Fks1 activation and the PE.
Indeed, farnesol, which mislocalizes RhoI, abolishes the PE in A. fumigatus isolates (34).

Taken together, these results suggest that tolerance to caspofungin in A. fumigatus
isolates represents a complex and dynamic process occurring in two phases. Whereas
calcineurin-dependent overexpression of chitin synthase seems to be essential for
initial adaptation and survival in response to caspofungin stress, the PE, representing a
delayed adaptive phenomenon, relies on the restoration of �-1,3-glucan synthase
activity (Fig. 2).

The clinical relevance of the PE is unclear. Note that the first description of this
phenomenon in Aspergillus derived from in vivo observations in animal models (35–37).
In a murine model of IA with escalating doses of caspofungin, Wiederhold et al. (37)
initially observed a dose-dependent effect, with optimal efficacy on the reduction of
pulmonary fungal burden with doses of 1 mg/kg but a significant loss of efficacy at
4 mg/kg. Interestingly, this transitional margin between the optimal and decreased
efficacy observed in vitro and in murine models corresponded to the clinical range of
therapeutic doses and trough plasma concentrations of caspofungin (38). However, the
paradoxical increase in fungal burden observed in vivo does not necessarily correlate
with the in vitro paradoxical growth. Moretti et al. (7) observed that the proinflamma-
tory effect of caspofungin at higher doses was still present with Aspergillus strains
lacking the in vitro PE. This study suggests that the expression of different pattern
recognition receptors at the surface of immune cells varies according to different
caspofungin concentrations and influences the in vivo activity of caspofungin, with
Dectin-1, TLR-2, and TLR-9 playing roles in the increased fungal burden and proinflam-
matory effect at higher doses (7).

Acquired resistance. Besides tolerance, which is an inherent ability of wild-type A.

fumigatus isolates to adapt to echinocandin stress, resistance to echinocandins can be
acquired by mutations in the �-1,3-glucan synthase-encoding gene (fks1). Although this
mechanism of resistance has been well described in Candida spp. with specific muta-
tions occurring in known hot spot regions of fks1 (39), it seems to be uncommon in
Aspergillus spp. The potential of A. fumigatus to develop such resistance has been
demonstrated by the generation of laboratory strains with an S678Y or S678P mutation
in fks1 (corresponding to the S645 site of Candida albicans) associated with phenotypic
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resistance to all three echinocandins (40, 41). To date, only one clinical strain harboring
an fks1 mutation (F675S) has been identified in a patient with chronic pulmonary
aspergillosis with substantially elevated echinocandin MICs compared with the wild
type after prolonged micafungin therapy (42). The loss of fitness resulting from these
fks1 mutations may be the reason it rarely occurs naturally in Aspergillus spp. (43).

ECHINOCANDINS IN CLINICAL PRACTICE
Susceptibility testing and interpretation. Testing of Aspergillus spp. susceptibility

to echinocandins is not routinely recommended and is actually of little utility for clinical
management. Because of the fungistatic activity of echinocandins, the threshold of
activity is expressed as an MEC. Echinocandins are active in vitro against most Asper-
gillus spp. (44, 45). The activity of echinocandins is conserved against azole-resistant A.
fumigatus isolates, including those harboring cyp51A mutations (46). Of the three
echinocandins, micafungin and anidulafungin are the most active in vitro, with MECs
usually one or two dilutions lower than that of caspofungin (44). The novel long-acting
echinocandin rezafungin (CD101) demonstrated acceptable in vitro activity against
Aspergillus spp., including azole-resistant A. fumigatus and cryptic species (47, 48).

Most studies of large collections of Aspergillus isolates showed a narrow range of
MEC distribution for echinocandins (44, 49, 50). However, the epidemiological cutoff
values (ECVs) obtained in these studies differ. Whereas Pfaller et al. (44, 49) reported an
MEC of �0.06 �g/ml for �99% of isolates for all three echinocandins, higher caspo-
fungin ECVs were reported in another study (0.25 to 1 �g/ml) (50). Reader-dependent
variability in the appreciation of MEC cutoff may explain these variations, although
adhesion to the strict definition of MEC (i.e., transition to compact rounded colonies)

FIG 2 Schematic representation of the caspofungin paradoxical effect in Aspergillus fumigatus. The cell wall stress induced by caspofungin results in increased
intracellular calcium (Ca2�). Calmodulin (CmdA) binds Ca2� and activates the calcineurin �-catalytic subunit (CnaA) by phosphorylation at the serine-proline-rich
region. CnaA dephosphorylates transcription factor CrzA, which moves to the nucleus and binds to specific promoter motifs (calcineurin-dependent reporter
elements [CDRE]) to induce expression of the chitin synthase genes (chsA, chsC, chsG, and csmB). On caspofungin exposure, the heat shock protein 90 (Hsp90)
shifts from the cytosol to the cell wall, where it possibly interacts directly with calcineurin or other client proteins. Hsp90 function relies on its interaction with
Hsp70 and the Hsp90-Hsp70 organizing protein StiA. Histone deacetylases (HDAC) are also important for Hsp90 function. During the early phase of caspofungin
exposure, the �-1,3-glucan synthase (FksA) in complex with the GTPase RhoI, is inhibited by caspofungin and moves into vacuoles. After prolonged exposure
at high caspofungin concentration, FksA relocalizes to the cell wall and recovers its �-1,3-glucan synthesis activity.
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was found to have good reproducibility (51). Because of the lack of correlation between
MEC and outcomes, both the Clinical and Laboratory Standards Institute (CLSI) and the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) abstain from any
recommendation of interpretation for echinocandins against Aspergillus spp. (52, 53).
The occurrence of mutations in hot spot regions of the fks1 gene is the only known
mechanism of echinocandin resistance in Aspergillus spp. and appears to be a rare
event (40–42). Substantially higher MECs (at least 20-fold) are expected in this setting.
In general, antifungal susceptibility to echinocandins should not be routinely tested
because of the lack of an established correlation between MECs and clinical response.

Efficacy of echinocandins in animal models of IA. Several animal models of IA

demonstrated the efficacy of echinocandins. Caspofungin monotherapy at different
dosages (1 and 2.5 mg/kg daily) was associated with significantly improved survival and
significant reduction of fungal burden in most tissues compared with untreated groups
in a guinea pig model of IA (54). Micafungin showed comparable results in murine
models, with a 50% effective dose of 0.25 to 0.5 mg/kg (55, 56). Micafungin seemed to
exhibit a dose-dependent effect on survival, whereas caspofungin was associated with
higher fungal burden in tissues at higher doses than at lower doses, without significant
impact on survival (37, 54, 55), which supports some role of the PE with the latter drug.
In comparative studies with other antifungal classes, the success rate of echinocandins
for the treatment of pulmonary IA tended to be lower than that of voriconazole but
comparable to that of amphotericin B (54, 55). In animal models, echinocandins
achieved good penetration in most tissues, with the exception of the brain and eye
because of their large size and amphipathic properties (57).

Echinocandins for the treatment of IA. Randomized clinical trials comparing the

efficacy of echinocandins versus other antifungal drugs for the treatment of IA are
lacking. One trial compared the efficacy of caspofungin versus amphotericin B for the
empirical antifungal treatment of persistent neutropenic fever (58). The success rates
using a composite endpoint were similar. Caspofungin exhibited higher success rates
among patients with fungal infections at baseline, but the small number of IA cases (12
in both arms) did not allow for drawing conclusions. Three prospective noncomparative
phase 2 studies assessed the efficacy of caspofungin as first-line treatment of proven or
probable IA in patients with hematological malignancies and reported success rates
(complete or partial response at the end of therapy) of 30% to 55% (59–61). The other
studies reporting data about the efficacy of caspofungin for the treatment of IA
consisted mainly of retrospective analyses or prospective observational registries.
According to a recent review, the overall success rate (complete or partial response
after pooling of all cases from individual studies) was 54% and 47% for caspofungin as
first-line or second-line/salvage therapy, respectively (62). A wide range of success rates
was observed between studies (27% to 92% and 28% to 71% for first- and second-line
treatment, respectively) (59). These results may be influenced by multiple factors,
including the type of population and underlying diseases, the diagnostic work-up
procedure and timing of diagnosis, the timing of the assessment of therapeutic
response, and the timing of the switch from first-line antifungal therapy to second-line
caspofungin. Most important, few of these studies provided a direct comparison with
other antifungals. Only one study reported a significantly higher IA-associated mortality
rate for caspofungin than for voriconazole (63). The efficacy of micafungin was also
assessed in a few studies with a limited number of cases and comparable results (30%
to 50% success rate) (64, 65). Data about anidulafungin monotherapy of IA are scarce.
Although echinocandins may be recommended as alternative therapy of pulmonary IA,
they should not be used for cerebral aspergillosis because of their poor penetration of
the hematoencephalic barrier (1, 2). Data about their efficacy for other extrapulmonary
IAs are limited.

Table 1 shows several situations for which echinocandins may be considered
first-line or salvage therapy of IA.
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Echinocandins in combination therapy of IA. In vitro and in vivo interactions of
echinocandins with other antifungal drugs, particularly amphotericin B and triazoles,
against Aspergillus spp. have shown various results. Importantly, the type of growth
medium was found to influence the in vitro interactions and serum attenuated the
synergistic effect, suggesting that these observations may not necessarily have the
same significance in vivo (66). Moreover, differences in drug exposure were found to
influence these interactions (67). Both synergistic and indifferent interactions have
been described for combinations of echinocandins and amphotericin B in vitro and in
murine models of IA, which were strain dependent and possibly drug dependent (66,
68–70). Similar observations were reported for the interactions between echinocandins
and triazoles with the presence of synergism for most but not all isolates (54, 66, 71, 72).
The combination of anidulafungin and voriconazole also demonstrated synergism
against azole-resistant A. fumigatus isolates (73, 74). However, the synergism was
decreased among isolates harboring mutations in the tandem repeats of cyp51A (i.e.,
the most frequently observed) compared with wild-type isolates or those harboring
other types of mutations (74). These observations are supported by a murine model of
pulmonary IA in which the combination of voriconazole and anidulafungin was syner-
gistic against an azole-susceptible A. fumigatus isolate but only additive against the
azole-resistant isolate harboring the TR34/L98H mutation, with higher doses required
for the latter (75). The combination of posaconazole and caspofungin was synergistic in
most cases (76). Interestingly, the synergism was also present against azole-resistant A.
fumigatus isolates and was more pronounced for those harboring the tandem repeat of
the promoter region or the M220 mutation in cyp51A compared with other mutations
of resistance. This positive interaction was confirmed in vivo in a murine model of
pulmonary IA demonstrating improved survival among mice infected with azole-
resistant A. fumigatus strains and treated with posaconazole plus caspofungin com-
pared with monotherapies (77). Interaction of echinocandins with the new mold-active

TABLE 1 Possible role and indications for echinocandins in the treatment of invasive aspergillosis

Indication Aima Situation Level of evidence (Ref.)

First-line treatment
(monotherapy)

To treat IA when no alternative
regimen (or potential risks
outweighing benefits for
other regimens)

Relative contraindications to azoles
(underlying liver disease, drug-
drug interactions, prolonged QT
interval); relative
contraindications to AMB
(underlying kidney disease,
nephrotoxic comedications)

Noncomparative prospective or retrospective
studies (overall success rate, 30–90%) (62)

Second-line treatment
(monotherapy)

To treat IA when first-line
antifungals have failed or
need to be discontinued

Toxicity of triazoles (hepatic test
disturbances, visual/neurological
side effects); toxicity of AMB
(acute renal failure); failure of
previous antifungal regimens

Noncomparative prospective or retrospective
studies (overall success rate, 30–70%) (62)

In combination with
triazoles or AMB

To obtain synergistic
interactions (triazoles, AMB)

Severe and/or disseminated IA,
galactomannan-positive IA; in
case of failure of previous
regimen or breakthrough IA;
for IA due to azole-resistant
A. fumigatus

One randomized controlled trial (trends,
benefit limited to subgroup analyses) (81);
expert opinion; murine models (75, 77)

To palliate potential PK/PD
defect until first-line drug
achieves appropriate serum
level (triazoles)

In severe and/or disseminated IA Expert opinion

To palliate potential inefficacy
of first-line drug (triazoles)

For empirical treatment, if
suspicion or high local
prevalence of azole-resistant
A. fumigatus; breakthrough IA

Expert opinion (82)

To obtain synergistic
interactions on biofilms
(triazoles, AMB)

For Aspergillus endocarditis or
osteomyelitis with presence of
prosthetic material

In vitro studies (79)

aAMB, amphotericin B; IA, invasive aspergillosis; PK/PD, pharmacokinetic/pharmacodynamic.
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triazole isavuconazole against Aspergillus spp. was described as indifferent for most
cases in one study (78).

One study suggested that both voriconazole and amphotericin B may interact
synergistically with caspofungin on Aspergillus biofilms (79).

Assessment of the efficacy of antifungal drug combinations in clinical practice is
difficult due to multiple potential confounding factors. The combination of liposomal
amphotericin B (standard dosage) and caspofungin was found to be superior to
liposomal amphotericin B alone (high dosage) in a small pilot study (80). A large
randomized double-blind placebo-controlled trial failed to demonstrate the superiority
of the combination therapy of voriconazole and anidulafungin over voriconazole alone
for the treatment of IA for the primary outcome of 6-week mortality, despite a trend in
favor of the combination (81). However, a post hoc analysis in the subgroup of patients
with IA diagnosis relying on positive galactomannan showed a significant benefit of the
combination. The reason the combination therapy demonstrated superiority over
voriconazole monotherapy only in the restricted population of galactomannan-positive
IA is unclear. One possible explanation proposed by the authors is that this subgroup
represents a more homogeneous population with fewer potential confounding factors
for the outcome analysis.

Clinical experience is lacking to assess the efficacy of the triazole-echinocandin
combination for the treatment of IA due to azole-resistant A. fumigatus, but expert
opinions support the use of this combination as an alternative to liposomal ampho-
tericin B monotherapy for the empirical treatment of IA in areas with a high prevalence
of azole resistance (i.e., �10%) or in cases of documented azole resistance (82).

Echinocandins may also be combined initially with triazoles with the goal to rapidly
achieve therapeutic levels in severe IA cases, considering that steady state for azoles is
only reached after 5 to 7 days of therapy. Albeit theoretical and not supported by
evidence, this approach is recommended by some experts.

Overall, evidence for a clear benefit of the combination of echinocandins with other
antifungal drugs is limited but sufficient to recommend its use in particular situations,
such as severe and/or disseminated IA, salvage therapy, or treatment of suspected or
documented azole-resistant A. fumigatus (Table 1).

On the laboratory side, several compounds with modest antifungal activity per se
demonstrated their ability to potentiate the activity of echinocandins, particularly
caspofungin. Targeting the Hsp90-calcineurin axis can be achieved by different meth-
ods and results in hypersensitivity to caspofungin and abolition of the PE at higher
concentrations. However, because this intracellular pathway is highly conserved in
eukaryotes, use of these compounds in humans is limited by a lack of specificity and
toxicity. Calcineurin inhibitors, such as tacrolimus (FK506) or cyclosporine, are strong
immunosuppressive drugs that favor the occurrence and progression of IA. The dis-
covery of a key serine-proline-rich region specific to the fungal calcineurin and essential
for its function presents perspectives for the development of novel fungal-specific
calcineurin inhibitors (83). Targeting Hsp90 is a difficult challenge because of the highly
conserved structure of this chaperone among eukaryotes. Several Hsp90 inhibitors have
passed the different stages of clinical development for an application in cancer therapy
(84). However, the antifungal activity of these compounds, e.g., geldanamycin, is
limited, and their positive interaction with echinocandins is observed only at toxic
concentrations (85). A more promising approach consists of targeting the histone
deacetylases (HDACs) to indirectly cripple Hsp90 function. Trichostatin A demonstrated
in vitro synergistic interaction with caspofungin against Aspergillus spp. at concentra-
tions that were well tolerated in mice (25, 85, 86). Novel HDAC inhibitors that are more
stable are currently being contemplated for anticancer therapy, and their antifungal
activity should be investigated. Finally, there may be an interest in investigating the
role of some Ca2� channel inhibitors used for the treatment of hypertension (e.g.,
verapamil), which can potentiate caspofungin activity and inhibit the PE (21).
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Echinocandins for IA prophylaxis. Because of the hepatotoxicity of azole com-
pounds and their multiple drug interactions, echinocandins are increasingly considered
for use in prophylaxis of invasive fungal infections. However, data to demonstrate their
efficacy in this setting are lacking. Breakthrough invasive fungal infections (consisting
mainly of IA) are usually observed at a frequency of 5% to 7% during echinocandin
prophylaxis, but a wide range of occurrence (1% to 28%) has been reported in the
literature (87). This is usually higher than the rate reported during mold-active azole
prophylaxis. Indeed, one study found that echinocandin prophylaxis was an indepen-
dent risk factor of breakthrough invasive fungal infections compared with voriconazole
or posaconazole prophylaxis during chemotherapy of acute leukemia (88). The role of
echinocandin prophylaxis for the prevention of IA seems to be limited to situations in
which a mold-active azole is contraindicated.

Other �-1,3-glucan synthase inhibitors. Ibrexafungerp (previously referred to as
SCY-078 or MK-3118) is a semisynthetic �-1,3-glucan synthase inhibitor derived from
the natural product enfumafungin (isolated from the fungus Hormomema spp.) and
belonging to the triterpenoids (structurally different from the echinocandins). Ibrexa-
fungerp has the advantage of bioavailability by the oral route and an antifungal
spectrum similar to that of echinocandins with fungistatic activity against Aspergillus
spp. In vitro testing showed MECs ranging from 0.06 to 0.25 �g/ml for the most relevant
pathogenic Aspergillus spp., including azole-resistant A. fumigatus (89, 90). Because
ibrexafungerp targets a different region of the �-glucan synthase than echinocandins,
its activity is not affected by the common hot spot mutations described in Candida spp.
and A. fumigatus isolates (91, 92). Ibrexafungerp demonstrated synergistic in vitro
activity in combination with mold-active azoles (voriconazole, isavuconazole) or am-
photericin B against azole-susceptible A. fumigatus (90), and a phase 2 clinical trial that
will test the efficacy of the ibrexafungerp-voriconazole combination versus voricona-
zole monotherapy for the treatment of IA is forthcoming.

CONCLUSIONS AND PERSPECTIVES

Of the three antifungal drug classes, echinocandins are the least active against
Aspergillus spp. However, echinocandins also have incontestable advantages, such as
their quasi-absence of related toxicity and lack of drug-drug interactions, which rep-
resent frequent limitations for triazoles and amphotericin B. A new niche for echino-
candins may arise from increasing reports of azole-resistant Aspergillus spp. This
perspective should, however, be moderated with the warning that increased echino-
candin use has also been associated with changes in the epidemiology of candidemia
and emergence of echinocandin resistance among C. albicans and C. glabrata isolates
(93, 94).

Recent advances in drug development increase the spectrum of this antifungal drug
class, with the advent of a long-lasting echinocandin (rezafungin). Moreover, novel
types of �-glucan synthase inhibitors are under development, such as ibrexafungerp, a
compound structurally different from echinocandins but with comparable activity
against Aspergillus spp. and availability for oral administration (47, 89). With the
frequent need of prolonged antifungal therapy for IA, these new formulations may
represent an alternative in the future. The widespread use of mold-active azole pro-
phylaxis also raises the challenge of the therapeutic management of breakthrough IA,
for which echinocandins may be considered in combination with other antifungals.
Echinocandins display positive interactions with the two other existing antifungal drug
classes and some experimental drugs. Moreover, their antifungal effect is not limited to
their fungistatic activity against Aspergillus hyphae but also involves an important
immunomodulatory effect on the host immune response, which plays a determinant
role in the outcome of IA. Therefore, the story of echinocandins illustrates the complex
and dynamic interactions between the antifungal drug, the fungus, and the host
immunity during the course of invasive mycosis, which is a fascinating topic. Further
studies should focus on better defining the role of the different echinocandins when
used alone or in combination in the treatment of IA. An alarming observation is that
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despite the extended spectrum of marketed antifungal drugs in the last decade, we still
have only three drug classes. Moreover, resistance in Aspergillus isolates is usually
observed across all drugs within a class. Therefore, drug combinations may become a
cornerstone to combat IA with more-resistant Aspergillus spp. in the future, and
echinocandins appear as the optimal candidates to act synergistically with other
antifungals.
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