Review Article

Candida auris: The recent emergence of a multidrug-resistant fungal pathogen

Kaitlin Forsberg1,2, Kate Woodworth3, Maroya Walters3, Elizabeth L. Berkow1, Brendan Jackson1, Tom Chiller1 and Snigdha Vallabhaneni1,*

1Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA, 2IHRC, Inc., Atlanta, Georgia, USA and 3Division of Healthcare Quality and Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

*To whom correspondence should be addressed. Snigdha Vallabhaneni, MD, MPH, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA. E-mail: fco6@cdc.gov

Received 2 January 2018; Revised 12 April 2018; Accepted 16 July 2018; Editorial Decision 29 May 2018

Abstract

Candida auris is an emerging multidrug-resistant yeast that causes serious invasive infections with high mortality. It was first discovered in 2009, and since then, individual cases or outbreaks have been reported from over 20 countries on five continents. Controlling C. auris is challenging for several reasons: (1) it is resistant to multiple classes of antifungals, (2) it can be misidentified as other yeasts by commonly available identification methods, and (3) because of its ability to colonize patients perhaps indefinitely and persist in the healthcare environment, it can spread between patients in healthcare settings. The transmissibility and high levels of antifungal resistance that are characteristic of C. auris set it apart from most other Candida species. A robust response that involves the laboratory, clinicians, and public health agencies is needed to identify and treat infections and prevent transmission. We review the global emergence, biology, challenges with laboratory identification, drug resistance, clinical manifestations, treatment, risk factors for infection, transmission, and control of C. auris.

Key words: Candida, drug resistance, infection control, fungal, healthcare-associated infections.

Introduction

Candida auris is an emerging multidrug-resistant yeast that can cause invasive infections, is associated with high mortality, and can spread in healthcare settings. This yeast was first described in 2009 and has since been reported in over 20 countries on five continents. C. auris poses a global health threat for several reasons:

1. Multidrug resistance is common, and a few isolates are resistant to all three of the main classes of antifungal drugs, severely limiting treatment options.1
2. C. auris is commonly misidentified in clinical laboratories. Unless laboratories are aware of possible misidentification and have the ability to perform further evaluation, cases of C. auris could go undetected.
3. C. auris can be transmitted between patients in healthcare settings and cause healthcare-associated outbreaks. C. auris can colonize patients, especially on the skin, perhaps indefinitely, and persist for weeks in the healthcare environment. The lack of decolonization methods and suboptimal efficacy of some commonly used hospital environmental disinfectants compounds the challenge of controlling its spread.

The genus Candida comprises an array of phenotypically similar yet genetically highly divergent yeasts. C. auris differs markedly from common pathogenic Candida species like Candida albicans and Candida glabrata. In healthcare settings, C. auris behaves more like transmissible bacterial multidrug-resistant organisms (MDROs), such as methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE), than other Candida species. Unlike other Candida...
infections, which are generally thought to result from autoinfection from host flora, *C. auris* can be transmitted between patients. Unlike for most other *Candida* species, for which transmission-based precautions are generally not required, *C. auris* requires implementation of specific infection control measures, much like those used for control of MRSA and CRE.

With its multidrug resistance, transmissibility, and severe outcomes, *C. auris* has all the makings of a “superbug.” Control of *C. auris* requires better understanding of the organism itself, vigilance and accurate identification, appropriate treatment and infection control measures, and a coordinated public health response. We review the emergence of *C. auris*, examining the global advent, biology, challenges of identification, multidrug resistance, clinical manifestations, treatment, risk factors for infection, transmission, and control of *C. auris*.

Methodology

All articles on PubMed as of March 2018 that contained the phrase “Candida auris” were reviewed (*n* = 109). Citations of these articles were reviewed for additional articles. When articles did not state the date of specimen collection for the earliest *C. auris* isolate in a country, isolate GenBank numbers, if provided, were searched in the Nucleotide database (www.ncbi.nlm.nih.gov/nuccore) to find the collection year. Supplemental governmental documents and conference abstracts were reviewed as needed for details on *C. auris* guidance and case identification by country.

Original data on *C. auris* cases, isolates, or specimens were extracted, including date of first report of cases and of first isolate by country; facility type; number of cases; proportion of cases that were clinical and bloodstream; specimen source; age and sex of patients; proportion of cases with central venous catheters, total parenteral nutrition, antibiotic or antifungal exposure, or other multidrug-resistant organisms; days to onset of *C. auris*; treatment; mortality; transmission; identification methods; resistance by drug; whole-genome sequencing; infection control procedures; and environmental testing. Data from articles describing other *C. auris* topics, like the development antifungal drugs or the microbiology of *C. auris* were summarized.

Emergence

Discovery and earliest cases

C. auris was first reported in 2009 following isolation from the external ear canal of a patient in Japan. The isolate was collected in June 2006 (GenBank accession no. NG055302) from an inpatient in a Tokyo geriatric hospital as part of an antifungal yeast diversity study. Sequencing of the D1/D2 domain of the 26S recombinant DNA (rDNA) and the internal transcribed spacer (ITS) region of rDNA revealed that the isolate was closely related to *Candida haemulonii*, *Candida pseudohaemulonii*, *Candida ruelliae*, and *Candida heveicola*, but was distinct from these previously known species. The organism’s unique ability to grow at 42°C and carbon assimilation patterns further confirmed this distinction. Based on these characteristics, the authors proposed a new species, *Candida auris* (Latin for “ear” since this isolate was obtained from the ear canal).

C. auris was subsequently reported in 2011 from 15 patient specimens in South Korea. The cases were identified from ear specimens collected in 2006 at three hospitals as part of a multicenter surveillance study of unusual yeasts. The original identification of these isolates occurred before *C. auris* was first given a name, so investigators initially reported these isolates as a novel species closely related to *C. haemulonii*. Through ITS and D1/D2 sequencing performed retrospectively after the first report of *C. auris* was published, the isolates were in fact confirmed to be *C. auris*. All patients had chronic otitis media, and seven had persistently positive cultures, including three who had received systemic antifungals. Based on the sequencing results and clustering in three hospitals, the investigators proposed that intra- and interhospital clonal transmission had occurred.

Soon afterward, reports of the first *C. auris* invasive bloodstream infections emerged. Three cases were identified in South Korea during retrospective microbiology reviews of unidentified yeasts, including one isolate collected in 1996, making it the earliest known occurrence of *C. auris*. The other two cases occurred in 2009. All three patients had hospital-onset infection; they had been hospitalized for at least 12 days before their first culture yielding *C. auris*. Isolates were initially misidentified as *C. haemulonii* on VITEK 2 and as *Rhodotorula glutinis* using API 20C and were accurately identified as *C. auris* by ITS and D1/D2 sequencing. The cases occurred in two 1-year-olds and a 74-year-old. Only one child cleared fungemia and survived. This report served as the first indication that *C. auris* was not just confined to the ears, as its name might suggest, but that it could cause serious, even fatal, invasive infections.

In 2013, *C. auris* bloodstream infections began to be reported from India, with the earliest *C. auris* culture dating back to 2009. These initial Indian studies identified four affected facilities: a tertiary care general hospital, a pediatric center, a hospital intensive care unit, and a university hospital located in northern and southern India. In subsequent years, cases of *C. auris* were also reported from Kenya and South Africa in 2014 and Kuwait in 2015.

In order to determine whether *C. auris* was truly emerging as a cause of human infections, a review of the SENTRY database was conducted. SENTRY is a collection of >15,000 Candida isolates collected during 2004–2015 from Asia, Europe, Latin America, and North America. Four isolates between 2004 and 2009, initially identified as *C. haemulonii*, were retrospectively identified as *C. auris*. Unpublished US Centers for Disease Control and Prevention (CDC) reviews of other large-scale isolate collections also confirmed the finding that *C. auris*, as well as
C. haemulonii, were relatively rare before 2009. These findings suggest that C. auris emerged as a cause of human infections primarily in the last decade.

Global reach

Since its description in 2009, C. auris has been reported from 23 countries spanning five continents (Table 1, Fig. 1). Because clinical laboratories often do not identify Candida isolates to the species level, and because C. auris is misidentified by commonly available laboratory methods, C. auris may be present in other countries, but has not been detected or has not yet been reported.

Table 1. Countries where Candida auris cases have been reported, as of March 2018.

<table>
<thead>
<tr>
<th>Country</th>
<th>Year of first report</th>
<th>Year of earliest isolate reported</th>
<th>Single case or multiple cases reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>2009</td>
<td>1997</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>South Korea</td>
<td>2011</td>
<td>1996</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>India</td>
<td>2013</td>
<td>2009</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Kenya</td>
<td>2014</td>
<td>2010</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>South Africa</td>
<td>2014</td>
<td>2012</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Kuwait</td>
<td>2015</td>
<td>2014</td>
<td>Single case</td>
</tr>
<tr>
<td>Germany</td>
<td>2016</td>
<td>2015</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Norway</td>
<td>2016</td>
<td>NR</td>
<td>Single case</td>
</tr>
<tr>
<td>Pakistan</td>
<td>2016</td>
<td>2008</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2016</td>
<td>2013</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>United States</td>
<td>2016</td>
<td>2013</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Venezuela</td>
<td>2016</td>
<td>2012</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Canada</td>
<td>2017</td>
<td>2017</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Colombia</td>
<td>2017</td>
<td>2013</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Israel</td>
<td>2017</td>
<td>2014</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Oman</td>
<td>2017</td>
<td>2016</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Panama</td>
<td>2017</td>
<td>2016</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Spain</td>
<td>2017</td>
<td>2016</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Austria</td>
<td>2018</td>
<td>2018</td>
<td>Single case</td>
</tr>
<tr>
<td>Belgium</td>
<td>2018</td>
<td>NR</td>
<td>Single case</td>
</tr>
<tr>
<td>France</td>
<td>2018</td>
<td>2017</td>
<td>Multiple cases</td>
</tr>
<tr>
<td>Malaysia</td>
<td>2018</td>
<td>NR</td>
<td>Single case</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>2018</td>
<td>2017</td>
<td>Single case</td>
</tr>
</tbody>
</table>

NR, Not reported.

*References are the earliest publication for each data point. When a country has reported multiple cases by having more than one single case report, the first two single case reports are cited.

Outbreaks of C. auris infections have been reported in healthcare facilities in Colombia, Spain, the United Kingdom, the United States, and Venezuela. One European outbreak involved 382 cases.

Several recent reports about C. auris describe not just a few sporadic cases or distinct outbreaks, but rather that C. auris has become a common cause of Candida infection. In South Africa, C. auris is now a leading cause of candidemia, having caused hundreds of confirmed cases. In India, a study of 27 intensive care units across the country found 5.7% of candidemia cases from April 2011 to September 2012 were due to C. auris. According to a report from Kenya, 38% of candidemia cases during 2010 to 2013 at one hospital were caused by C. auris. These cases represent a remarkable shift in species distribution, considering that C. auris had rarely been detected before 2009 anywhere in the world.

In the United States, over 250 C. auris cases have been identified through specimens collected during routine clinical care as of February 2018. The earliest known case in the United States was from 2013 in a patient who was transferred for care to the United States from a hospital in the United Arab Emirates. All other reported US cases occurred after mid-2015. Cases have been identified in 10 states but have been primarily concentrated in New Jersey and the New York metropolitan area. In New York and New Jersey, most patients have received care at interconnected healthcare facilities in concentrated geographic areas. Epidemiologic links between cases have also been found in Illinois, where one healthcare facility was associated with at least three cases.

Simultaneous emergence in disparate geographic regions

The perplexing and increasing pace of reports of C. auris from separate global geographic regions raise questions about how C. auris emerged so rapidly around the world. Did the organism emerge in one location and spread to the rest of the world? Did it emerge independently across these different regions? To answer these questions, mycologists turned to whole-genome sequencing (WGS).

WGS of isolates from around the world revealed some remarkable and puzzling results. Genetic sequences of C. auris isolates grouped into four geographically distinct clades: South Asia, South Africa, South America, and East Asia. The clades differ by tens of thousands of single-nucleotide polymorphisms.

Ruiz A. Epidemiology and clinical features caused by Candida auris in the setting of a prolonged outbreak. Trends in Medical Mycology Conference, Belgrade, Serbia, October 6-9, 2017, S18.A.
(SNPs), whereas isolates within a clade are highly related and differ by only a few hundred SNPs or less.1,21 The $C.\text{auris}$ genome consists of approximately 12.5 million base pairs, hence a difference of a few hundred SNPs within a clade indicates that isolates are almost clonal.1 To date, these four clades have remained discrete, and all isolates sequenced after the initial assessment have grouped into one of the four clades. This unusual finding suggests that $C.\text{auris}$ emerged independently and nearly simultaneously in at least four geographic locations.

The reasons for this simultaneous emergence are not known. Hypotheses have included increasing rates of antifungal use globally, animal reservoirs, and environmental changes. Initial epidemiologic characterization of $C.\text{auris}$ cases found that many patients with $C.\text{auris}$ infection had been receiving antifungal drugs at the time $C.\text{auris}$ was isolated,1 suggesting that drug pressure could have resulted in emergence of this resistant organism, at least within healthcare settings. An animal or environmental reservoir for $C.\text{auris}$ has not yet been identified. However, closely related Candida species have been isolated from several animal, food, and environmental sources, including fish,22 cassava roots,23 and sea water.22,24 The clade-specific geographic clustering may also offer insight into the reasons for simultaneous emergence. However, strains may have originated in a different location than they were first detected as a human pathogen. The unique attributes of $C.\text{auris}$, like its high rates of multidrug resistance, geographic presence, and ability to grow in conditions with high salinity and high temperatures, may provide clues to its origins, which remain unknown.

Whole-genome sequencing as an epidemiological tool

CDC is increasingly using WGS in fungal investigations, and this approach has greatly informed our understanding of $C.\text{auris}$ transmission. WGS performed on $C.\text{auris}$ isolates from the United States show that most isolates from New York and New Jersey are related to isolates from South Asia and that Illinois isolates are related to isolates from South America.14 At least five cases in the United States have been identified in patients who received healthcare in a country with known $C.\text{auris}$ transmission in the months before their $C.\text{auris}$ infection.25 In each case, the patient’s isolate closely aligned with isolates from the country where the patient had received care: India, Pakistan, Venezuela, and South Africa. Taken together, WGS provides evidence for multiple introductions of $C.\text{auris}$ into the United States followed by local transmission.14

Additional sequencing techniques have been employed for the investigation of $C.\text{auris}$. In the United Kingdom, researchers have begun using the MinION, a nanopore sequencer, to examine the epidemiology of $C.\text{auris}$, making this the first time this technology has been used during a fungal outbreak.26 ITS and 28S rDNA D1/D2 sequencing have shown that the several independent introductions of $C.\text{auris}$ occurred in the United Kingdom, similar to the WGS results in the United States.27

Travel-based introductions continue to be supported through epidemiology as well. Two Canadian patients had recently received care in India,28,29 an Israeli patient had received care
in South Africa, and a French patient had received care in India and Iran (at this time, Iran has not reported any C. auris cases). Travel-related cases and evidence for introduction from abroad have led to guidance in the United States and the United Kingdom on screening or species identification for patients with exposure to healthcare facilities in countries where C. auris transmission has occurred.

Biology and morphology

The closest relatives of C. auris are C. ruelliae, C. pseudobaemulonii, Candida duobushaemulonii, Candida vulturna, C. beveicola, Candida konsanensis, Candida chanthaburiensis, C. haemulonii, and Candida haemulonis var. vulnera. C. auris is an ovoid to elongate budding yeast, which seldom forms rudimentary pseudohyphae and typically appears as pink, but sometimes white or red, colonies on CHROMagar Candida or CAN2 chromogenic medium. This organism has a high tolerance for salinity and heat. Its unique ability to grow at temperatures up to 42°C and to grow in high salt conditions may help to distinguish C. auris from other Candida species and aid laboratory isolation. However, none of the phenotypic characteristics of C. auris are sufficient evidence for definitive identification. Sequencing, mass spectrometry, or a VITEK 2 version 8.01 are needed to accurately distinguish C. auris from closely related Candida species.

Some strains of C. auris have been reported to form aggregations in culture, which may allow the organism to resist penetration by detergents, ultraviolet light, or other cleaning methods. C. auris also forms biofilms, which provide a mechanism of adherence to surfaces. However, these biofilms are significantly thinner and less complex than those of C. albicans, primarily due to the rarity of pseudohyphae. C. auris may therefore have reduced ability to attach to surfaces like catheter material as compared to species that can form more robust biofilms.

In animal models, C. auris exhibits similar or slightly less virulence as C. albicans and Candida tropicalis and greater virulence than the closely related species C. haemulonii. Its ability to form biofilms, produce phospholipase and proteinase, and secrete aspartic proteases as well as the presence of oligopeptide transporters and mannosyl transferases may explain some of the virulence seen with C. auris, though some of these characteristics have varied by strain. Aggregate-forming strains may be less virulent than strains without cell aggregations. Despite these advances in our understanding of C. auris, much remains unknown about its cell biology and virulence characteristics.

Missed identification and misidentification

One of the biggest challenges in controlling the spread of C. auris is that the organism can “hide in plain sight,” going undetected in healthcare facilities. Many clinical laboratories do not perform species identification for Candida, and, when identification is attempted, C. auris can be misidentified.

Identification often not performed

Many laboratories do not routinely identify Candida isolates to the species level. Yeast identification capacity is limited in many laboratories and Candida species, when identified from non-invasive sites, such as the lungs or urine, may represent colonization and not require antifungal treatment, making information about the specific species seem unnecessary. In some cases, clinicians may not appreciate the need for species-level identification even for invasive Candida infection and plan to treat all Candida with the same antifungal drug.

However, there are compelling reasons to identify Candida species, especially when the infection is in an invasive, sterile site. Many Candida species have characteristic antifungal resistance patterns, and knowing the species can assist clinicians in making an effective and appropriate choice for antifungal treatment. For example, C. albicans is usually susceptible to antifungals and can be treated with fluconazole, whereas C. glabrata has high fluconazole resistance rates and echinocandins should be used as the first-line treatment instead.

Identifying Candida species from nonsterile sites should also be considered in certain situations. Unlike for other Candida species, which are not thought to be transmitted in the healthcare environment, identification of C. auris is critical for preventing transmission through the implementation of infection control measures. Transmission-based precautions are recommended not just for patients with invasive C. auris infections, but also for patients with C. auris identified from nonsterile body sites who may be colonized rather than infected. Further underscoring the importance of species identification for Candida from nonsterile sites is that approximately half of US clinical C. auris cases have been identified in non-blood samples, such as urine, wound, respiratory specimens, and bile fluid. Thus, cases may go unrecognized if laboratories do not identify the Candida species for non-blood specimens. CDC recommends determining species from nonsterile sites when:

2. A case of C. auris colonization or infection has been detected in a unit or facility.
3. A patient has had an overnight stay in a healthcare facility outside the United States in the previous year in a country with documented C. auris transmission.

Misidentification of Candida auris

Even when species-level identification is performed, C. auris may be misidentified by the most commonly used clinical microbiology methods, including biochemical methods and automated testing instruments. The most frequent misidentification
has been *C. haemulonii*, a closely related species.\(^3\) A study of Indian isolates found that ~90% of isolates from five facilities classified by VITEK 2 as *C. haemulonii* were actually *C. auris*.\(^35\) In a test of a panel of 10 *C. auris* isolates by yeast identification systems, *C. auris* was misidentified as *R. glutinis* by API 20C AUX, as Candida catenulata and *C. haemulonii* by BD Phoenix, as *C. haemulonii* by VITEK 2, and as Candida famata, Candida lusitaniae, Candida parapsilosis, and Candida guilliermondii by MicroScan.\(^46\) Other investigators report that *C. auris* has also been misidentified as *C. albicans*, *C. catenulata*, and *C. tropicalis* on MicroScan.\(^47,48\) as *C. famata* by API Candida and VITEK 2,\(^6,47\) as *C. parapsilosis* on RapID Yeast Plus,\(^49\) and as Candida sake by API 20C\(^6,50\) and API/ID32C.\(^31\) *C. auris* should also be suspected when there is an increase in unidentified Candida isolates from a patient care unit.

Molecular methods or matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) are required for species identification. *C. auris* can be identified by sequencing the D1/D2 region of the 28S rDNA or ITS of rDNA.\(^5\) Bruker Biotyper and bioMérieux VITEK MS MALDI-TOF MS identification currently requires the use of a “research use only” database that contains *C. auris*. Without this database, the systems will provide no species identification (“No ID”)\(^46\) or the VITEK MS system may misidentify *C. auris* as *C. haemulonii* or *C. lusitaniae*.\(^50\) Other databases with *C. auris* identification available have also been created, including Quest Diagnostics’s CMOs\(^51\) and CDC’s MicrobeNet.\(^52\) VITEK 2 with the 8.01 software update may also correctly identify *C. auris*, though independent studies demonstrating this have not yet been published. These methods for *C. auris* identification are often not available in laboratories. For example, the European Centre for Disease Prevention and Control found over a quarter of the European Union/European Economic Area countries did not have the laboratory capabilities needed to identify *C. auris*.\(^16\)

Rapid culture-independent diagnostic tests are under development, including polymerase chain reaction (PCR) and real-time PCR techniques.\(^53\) Such techniques will greatly enhance capacity to identify patients who are colonized with *C. auris*. Rapid identification will support infection control by allowing healthcare facilities to quickly screen patients to identify new cases and swiftly implement infection control measures.

Multidrug resistance

C. auris is a highly concerning pathogen because it can be resistant to multiple antifungal drugs, with some isolates resistant to all three major antifungal classes (azoles, polyenes, and echinocandins). The Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST) have not established clinical susceptibility minimum inhibitory concentration (MIC) breakpoints for *C. auris*. In the interim, CDC has proposed the following tentative breakpoints, conservatively based on those established for other species: ≥32 for fluconazole, ≥2 for amphotericin B (or ≥1.5 if using Etest), ≥4 for anidulafungin and micafungin, and ≥2 for caspofungin.\(^54\)

In a collection of 54 isolates from India, Pakistan, South Africa, and Venezuela, 93% of isolates were resistant to fluconazole, 35% were resistant to amphotericin B, and 7% were resistant to echinocandins using the following breakpoints: ≥32 for fluconazole, ≥2 for amphotericin B, and ≥8 for echinocandins.\(^1\) Forty-one percent of isolates were resistant to at least two drug classes and two isolates were pan-resistant.\(^1\)

In the largest study of *C. auris* resistance, on 350 isolates from India, 90% of isolates were resistant to fluconazole by the tentative breakpoints described above, 2% to anidulafungin, 2% to micafungin, and 8% to amphotericin B.

In the United States, about 90% of isolates have been resistant to fluconazole, 30% have been resistant to amphotericin B, and 5% have been resistant to echinocandins.\(^54\) Public Health England has reported that all UK isolates have been resistant to fluconazole, approximately 20% have been resistant to amphotericin B, and about 10% have been resistant to echinocandins.\(^32\) Taking data from around the world into account, *C. auris* has been generally resistant to fluconazole, and a substantial portion of isolates has been resistant to amphotericin B and echinocandins.

Most other species of *Candida* identified in clinical specimens exhibit high *in vitro* susceptibility to antifungal drugs. One of the other drug-resistant *Candida* of high concern has been *C. glabrata*, in which approximately 10% of isolates in the United States exhibit fluconazole resistance and 0–10% exhibit echinocandin resistance.\(^56,57\) In comparison, the level of drug resistance observed in *C. auris* is unprecedented. Molecular mechanisms underlying this resistance are currently under investigation. Twelve Erg11 mutations, which have been found in fluconazole-resistant but not wild-type *C. albicans*, have been found in *C. auris*.\(^1,55\) Three of these mutations have been directly linked to drug resistance in *C. albicans*, suggesting that they contribute to the resistance observed in *C. auris* as well.\(^58\) Efflux pump activity contributes to azole resistance in other Candida species and may contribute to resistance in *C. auris*, though the extent of this contribution is unknown.\(^37\) None of these mechanisms alone can account for the high levels of resistance seen in *C. auris*, so multiple mechanisms are likely involved. Elevated echinocandin MICs are likely the result of FKS mutations observed in *C. auris* isolates, such as the S639F mutation observed in isolates from India.\(^55\) These mutations correspond to known mutations in other *Candida* species, which have been directly linked to echinocandin resistance.\(^59\) Finally, while resistance to amphotericin B is rare in the most common
Candida species, it is observed in approximately 30% of US isolates of C. auris. Though unconfirmed at this time, it is suspected that this is likely due to a reduction in ergosterol content in the cellular membrane—specifically a mutation in a gene involved in ergosterol biosynthesis.60

Clinical manifestations
Similar to other Candida species, C. auris can cause severe invasive infections or colonize patients without infection. C. auris has been isolated from normally sterile body sites, including blood, bone, and cerebrospinal fluid, indicating invasive infection.39,47 Infections may be severe, and persistently positive blood cultures for >5 days or recurrent candidemia in those with C. auris candidemia have been reported.20 C. auris candidemia is associated with mortality rates of about 30–60%, depending on the setting.5,6,8,15,37,47,50,61,62 Other clinical sources found in the course of routine patient care have been bile fluid, the ear, jejunal biopsy, ocular secretion, peritoneal fluid, pleural fluid, the respiratory tract, urine, vaginal fluid, and wounds; some of these represent sites of colonization rather than infection. Patients can also be asymptomatically colonized with C. auris on the skin, nares, and other body sites.

Treatment
Only three major classes of antifungal drugs are available to treat invasive fungal infections. C. auris poses a real treatment challenge because of high rates of antifungal drug resistance. As reported above, most C. auris isolates are resistant to fluconazole, the most widely available antifungal treatment for candidiasis. The alternatives, echinocandins and amphotericin B, are expensive and are not easily available in countries with more limited resources.17 Amphotericin B is also known for causing severe side effects.

Although studies have reported therapeutic outcomes,1,8,15 no systematic study has assessed effectiveness of various antifungals against C. auris infections in humans. However, in a mouse model, micafungin was more efficacious at killing C. auris than fluconazole and amphotericin B.63 An in vitro study examining combinations of treatment with echinocandins and azoles found a synergistic interaction between micafungin and fluconazole and did not find any antagonistic interactions between micafungin or caspofungin and fluconazole or voriconazole.64 Research is also being conducted on activity of new drugs like SCY-078,38,65 APX001A/APX001,66 and CD10167 against C. auris, but these options are not yet available for clinical use in most settings.

Based on the most frequent resistance profiles, echinocandins are the recommended first-line treatment for most C. auris infections in adults.25 Antifungal susceptibility testing is advised to inform treatment and patients should be closely monitored for treatment failure. Acquired resistance while on treatment is a concern. Echinocandin resistance has developed in patients with C. auris infection while receiving echinocandin treatment.25 For neonates and infants under 2 months of age, CDC recommends amphotericin B deoxycholate (1 mg/kg daily) as the first line treatment, with consideration of liposomal amphotericin B (5 mg/kg daily) if unresponsive to amphotericin B deoxycholate.68 Echinocandin treatment in neonates and infants under 2 months of age should only be considered in rare circumstances and only after checking that the central nervous system has not been affected. Removal of catheters and lines and surgical debridement have been used alongside antifungal drugs when clinically indicated.5,8,15,30,61,69,70

Risk factors for Candida auris infection
Case reports and descriptive studies of C. auris have provided insights on the populations most likely at risk for C. auris infections. C. auris can infect people of all ages; C. auris candidiasis is most common in older persons, and infections in neonates and children have occurred.6,15 Many of the risk factors for C. auris infection are similar to risk factors for other types of Candida infections and include underlying medical conditions like cancer and diabetes, as well as recent history of abdominal surgery, presence of central venous catheters, and recent antibiotic exposure.1,8 Nearly half of patients with C. auris infection had been receiving antifungals at the time of or immediately before C. auris infection was diagnosed, indicating that previous antifungal therapy may be a risk factor for C. auris infection.1,6,8,30,47,61,62 Patients with C. auris infection often have catheters, tracheostomies, gastrostomy tubes, total parenteral nutrition, or other invasive devices.8,12,15,30,47,48,62,70,71

Most patients with C. auris infection in the United States have had extensive exposure to healthcare in the months preceding the C. auris infection, particularly in higher acuity long-term care facilities, such as long-term acute care hospitals and skilled nursing facilities that support patients who are chronically ventilator dependent.14 Exposure to long-term care facilities has been a known risk factor for acquiring several bacterial MDROs, such as CRE;72 in contrast, other Candida infections have historically been in associated with care in intensive care units. Recent exposure to healthcare in countries with extensive C. auris transmission is also an emerging risk factor.

One Indian study investigated risk factors for C. auris candidemia compared to non-C. auris candidemia.82 This analysis found that geographic region, admission to public sector hospitals (compared with private sector hospitals), underlying respiratory illness, vascular surgery, prior antifungal exposure, and low APACHE II scores were significantly associated with C. auris candidemia.
Transmission of Candida auris

With the exception of documented outbreaks of C. parapsilosis in intensive care units, Candida have not historically been thought to spread in healthcare settings.\(^{73-75}\) C. auris appears distinct among yeast in that it readily spreads in healthcare settings. The sections below elaborate on the various aspects of C. auris that contribute to its ability to spread in healthcare settings. Interventions to limit the spread of C. auris are similar to those used for multidrug-resistant bacteria, which traditionally have been the focus of healthcare-associated transmission research and infection control.

Patients can be colonized with Candida auris

Many Candida species are commensals of the gastrointestinal tract, although they have also been isolated from other body sites, such as skin and nails.\(^{76}\) C. auris seems to have a special predilection for the skin. Data from swabs taken to assess patients for C. auris colonization show that the axilla and groin are the highest yield sites to detect colonization, followed by nares. Specimens from urine, stool, vagina, and rectum have also yielded C. auris.\(^{36}\) Patients with clinical infection with C. auris were typically found to be colonized in noninvasive sites, like skin, long after resolution of invasive infection.\(^{77}\) Patients may also become colonized with C. auris without active infection.

Although asymptomatic colonization with C. auris does not require antifungal treatment, it is important to identify individuals who are colonized. Colonization can lead to invasive infections; patients who were colonized with C. auris developed an invasive bloodstream infection days to months after becoming colonized. The candidemia usually occurs after an event, such as placement of a new line or tube, which provides the opportunity to introduce the organism from the skin into the bloodstream. Patients colonized with C. auris can also be a source of transmission to other patients. Unlike the management of almost any other Candida species, a patient known to be colonized with C. auris should be placed in a single room with contact precautions to prevent spread in the healthcare facility.

For many patients in long-term healthcare settings, colonization with C. auris persists for many months, and possibly indefinitely.\(^{11,25,32}\) To date, few patients followed in the United States have cleared colonization, and there are no known decolonization regimens. Whether some topical antiseptics might reduce the burden of C. auris on the skin, and therefore provide a potentially valuable tool for infection control, is unclear. In vitro testing has shown 10% povidone-iodine, a skin antiseptic, to be effective in reducing C. auris.\(^{78}\) Chlorhexidine gluconate solutions containing isopropyl alcohol, usually used for catheter placement and maintenance, may also be effective, but a diluted 4% chlorhexidine gluconate wash did not sufficiently reduce C. auris burden.\(^{78}\) Chlorhexidine body washes have been used in healthcare facilities with C. auris outbreaks settings, but patients have remained colonized with C. auris even after repeated washes.\(^{11,13}\) Whether chlorhexidine plays any role in source control (reducing burden of C. auris rather than eradication) remains to be studied. Other potential decolonization strategies could include use of topical antifungal drugs but have not been studied.

Transmission between patients

C. auris can be transmitted between patients in healthcare settings. In the United States, 12% of close healthcare contacts of index patients (e.g., persons who shared a room with an index patient or had an overlapping stay in a healthcare facility with an index patient), who were screened for C. auris, primarily in long-term healthcare settings, were colonized.\(^{14}\) In India, 21% of screened patients (mainly those in the same ward as the index patients) were colonized with C. auris.\(^{11}\) Studies have suggested that colonization can occur rapidly, after just a few hours or a few days of exposure.\(^{11,13}\) Transmission of C. auris has also been documented through solid organ transplantation.\(^{14,79}\)

Healthcare personnel may play a role in transmitting C. auris from one patient to another, particularly with inadequate hand hygiene and contact precautions and through the movement and use of contaminated equipment. In a study of a north Indian tertiary hospital, C. auris was detected on the hands of four healthcare workers (2.8%); this was likely due to inadequate hand hygiene as opposed to long-term colonization.\(^{11}\) In a C. auris outbreak investigation in the United Kingdom, of >250 healthcare personnel who were screened with nose, axilla, groin, and throat swabs, only one, a nurse, was found to be transiently colonized with C. auris.\(^{13}\)

Although transmission of C. auris in healthcare settings has been well-documented, less is known about transmission in the community. A report of screening on admission to the hospital (potentially reflecting burden of C. auris in the community) in the United Kingdom found that just one in over 2200 of admitted patients were positive for C. auris. However, this screening was performed in a low prevalence country, and the patient’s prior healthcare exposures were not reported, limiting interpretation about whether C. auris colonization was acquired in the community or in the healthcare setting.\(^{13}\) A smaller admission screening program at a trauma intensive care unit in India, a country with more documented transmission, did not find any patients with C. auris colonization at admission.\(^{11}\) In the United States, nearly all patients have had recent healthcare exposure. Community-based studies are necessary to understand the risk of transmission outside healthcare settings.

Environmental spread

C. auris may spread through contact with contaminated environmental surfaces and fomites. People infected or colonized with C. auris shed the organism. Environmental sampling for
C. auris has found the organism in several places in rooms of patients and hallways outside patient rooms, including beds, chairs, windowsills, countertops, trolleys, electrocardiogram leads, blood pressure monitoring cuffs, infusion pumps, and ventilators. Shared and mobile equipment, like temperature probes, have also tested positive for C. auris and provide a potential transmission route for patients placed in single rooms.

To make matters worse, C. auris persists on surfaces. In laboratory studies, C. auris has been shown to survive on moist surfaces for at least 7 days, on dry linen for up to 7 days, on dry steel disks for at least 7 days, and on dry plastic coupons for at least 14 days. C. auris cells remain viable on plastic surfaces for at least 4 weeks, or 2 weeks after they are no longer culturable. It is not yet known if viable but nonculturable cells are able to cause infection or colonization. The ability of C. auris to remain culturable on surfaces appears to be greater than that of C. albicans but less than that of C. glabrata or C. parapsilosis.

Infection control

Recommendations for infection control measures for C. auris have been adapted from strategies used for other pathogens, such as CRE and Clostridium difficile, which readily spread in the healthcare environment. Improved infection control measures have been shown to decrease transmission of other MDROs in healthcare settings. These methods are novel for a Candida species as, historically, transmission was not a concern for most Candida species. Recommendations for infection control are the same for a patient infected or colonized with C. auris since both pose a risk for transmission.

Hand hygiene and contact precautions

Hand hygiene is one of the most basic components of infection control. Hand hygiene can be performed with soap and water, alcohol-based hand rubs, or alcohol and chlorhexidine hand rubs.

To contain transmission, patients with C. auris should be placed in a single room on contact precautions with dedicated, noncritical equipment. Patients with C. auris may be cohorted in the same room if single rooms are not available. However, patients with C. auris and other MDROs should not be placed in the same room as patients with C. auris with no other or different MDROs.

Contact tracing and active surveillance

After a facility identifies a C. auris case, contact tracing should be performed to identify other patients who may have been exposed to C. auris and screen them for asymptomatic colonization. The patients of highest priority for screening are patients who are currently sharing a room with the index patient or who had shared a room with them in the month preceding identification of C. auris. These high priority patients include patients at other facilities where the index patient was admitted during this period and who have since been discharged. Point prevalence surveys to screen additional contacts, such as patients in the same unit as the index patient, should be strongly considered, particularly if the patient was not under contact precautions for his or her entire stay or if the patient was under contact precautions but there was suboptimal adherence. If transmission is identified, periodic point prevalence surveys are indicated to assess whether infection control interventions have stopped transmission. Facilities should consider prospective surveillance for additional cases by performing species identification on all clinical cultures in which Candida is detected until there is no evidence of ongoing transmission, including cultures from non-sterile sites such as urine or wounds.

Disinfection

Evidence to date indicates that several commonly used hospital disinfectants are not effective against C. auris. An in vitro study of the effectiveness of commercial cleaning products and white distilled vinegar found that quaternary ammonium products were not effective against C. auris; however, sodium hypochlorite and topical hydrogen peroxide-based products have been shown to be effective in vitro and in environmental sampling surveys of C. auris in rooms thoroughly cleaned with a sodium hypochlorite disinfectant. UK investigators reported that cleaning patient rooms with chlorine products three times a day and performing terminal cleaning with chlorine detergent and hydrogen peroxide vapor was anecdotally effective. Early in vitro research suggests that hydrogen peroxide vapor may be effective on some strains, but further research is needed to evaluate its effectiveness in real-world settings. Ultraviolet light room decontamination devices do not appear to be as effective for disinfecting C. auris in patient rooms as they are for vegetative bacterial pathogens, though these devices may be useful as a supplemental cleaning method and when using longer exposure times. CDC has recommended daily and terminal cleaning for rooms of patients with a US Environmental Protection Agency-registered disinfectant effective against C. difficile spores.

In less than a decade since its discovery, the multidrug-resistant yeast C. auris has emerged globally, causing severe infections and outbreaks. C. auris has brought about a paradigm shift in the way we think about Candida. Its high rates of multidrug resistance and transmissibility are unlike those of other pathogenic Candida species. Its emergence is a reminder that the genus Candida can include species with vastly different characteristics. Knowing that an invasive infection is caused by "Candida" is not enough; the species name is important because of the different antifungal susceptibility patterns and different propensities for transmission in healthcare settings of different
species. Healthcare transmission of \textit{C. auris} should motivate us to reexamine our assumptions about infections from other \textit{Candida} species arising from autoinfection from host flora and consider whether transmission may play a role with other \textit{Candida} species as well. The rise of \textit{C. auris} has also made clear the need for a wider antifungal armamentarium given the resistance observed to all three major classes of systemic antifungals. \textit{C. auris} is proof that multidrug-resistant, infectious fungal pathogens are possible, and we need to be prepared to detect, prevent, and treat them.

Prevention of \textit{C. auris} will be more effective and efficient than reactive efforts, as \textit{C. auris} is difficult to eliminate from healthcare facilities once established. Clinicians need to know when to expect \textit{C. auris} infection or colonization in a patient based on known risk factors, how to treat infections, and how to implement strict infection control measures and contact precautions to prevent transmission. Laboratorians need to provide accurate species identification and alert clinicians and public health departments to suspected or confirmed cases. Public health departments, healthcare facilities, and other related health networks need to raise awareness about \textit{C. auris} through communication and education and oversee a regional approach to prevent transmission of \textit{C. auris} and other healthcare associated infections. Such a coordinated response is essential for identifying, treating and controlling the spread of \textit{C. auris}, a first-of-its-kind fungal pathogen.

Acknowledgments

We thank Anastasia Litvintseva, Shawn Lockhart, Sharon Tsay, and Rory Welsh of the Mycotic Diseases Branch, Centers for Disease Control and Prevention, and Alex Kallen of the Division of Healthcare Quality and Promotion, Centers for Disease Control and Prevention, for their assistance and expertise.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and the writing of the paper. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

References

