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ABSTRACT. Adverse health effects of fungal bioaerosols on occupants of water-damaged
homes and other buildings have been reported. Recently, it has been suggested that mold
exposure causes neurological injury. The authors investigated neurological antibodies and
neurophysiological abnormalities in patients exposed to molds at home who developed
symptoms of peripheral neuropathy (i.e., numbness, tingling, tremors, and muscle weakness
in the extremities). Serum samples were collected and analyzed with the enzyme-linked im-
munosorbent assay (ELISA) technique for antibodies to myelin basic protein, myelin-associ-
ated glycoprotein, ganglioside GM,, sulfatide, myelin oligodendrocyte glycoprotein, o-8-
crystallin, chondroitin sulfate, tubulin, and neurofilament. Antibodies to molds and
mycotoxins were also determined with ELISA, as reported previously. Neurophysiologic
evaluations for latency, amplitude, and velocity were performed on 4 motor nerves (medi-
an, ulnar, peroneal, and tibial), and for latency and amplitude on 3 sensory nerves (median,
ulnar, and sural). Patients with documented, measured exposure to molds had elevated titers
of antibodies (immunoglobulin {IglA, 1gM, and 1gG) to neural-specific antigens. Nerve con-
duction studies revealed 4 patient groupings: (1) mixed sensory-motor polyneuropathy (n =
55, abnormal), (2) motor neuropathy (n = 17, abnormal), (3) sensory neuropathy (n = 27,
abnormal), and (4) those with symptoms but no neurophysiological abnormalities (n = 20,
normal controls). All groups showed significantly increased autoantibody titers for all iso-
types (IgA, IgM, and IgG) of antibodies to neural antigens when compared with 500 healthy
controls. Groups 1 through 3 also exhibited abnormal neurophysiologic findings. The au-
thors concluded that exposure to molds in water-damaged buildings increased the risk for
development of neural autoantibodies, peripheral neuropathy, and neurophysiologic abnor-
malities in exposed individuals.
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WATER INTRUSION into houses and office buildings
leads to the growth of molds and bacteria, which are
known to produce toxic byproducts that include endo-
toxins (lipopolysaccharides), B-D-glucans, and myco-
toxins (e.g., trichothecenes, ochratoxins, and aflatoxins,
tremorgens), as well as volatile organic compounds.’?
These compounds have been found in water-damaged
buildings and homes, and in artificially infested build-
ing materials.”~"" Indoor air can be contaminated with
mold spores and hyphae fragments.'? In addition, my-
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cotoxins have been identified in ventilation duct partic-
ulate matter or dust, and in the air of buildings in which
occupants and pets have experienced adverse health ef-
fects related to mold exposure.’*-23

Molds and mycotoxins affect the respiratory tract,
kidneys, liver, and skin, as well as the immune and ner-
vous systems.?**> Neurotoxic mycotoxins include ergot
alkaloids, trichothecenes, citreovirdin, patulin, fumon-
isins, and tremorgens.“6->* Tremorgens affect the brain-
stem*® and stellate ganglion, and the basket and Pur-
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kinje cells of the cerebellum.*” Mycotoxins affect neu-
roreceptor sites (e.g., gamma-aminobutyric acid
[GABA] receptor site*® and inositol 1,4,5-trisphophate
receptor®), inhibit acetylcholinesterase,*® release exci-
tatory neurotransmitters (e.g., glutamate, aspartate,
GABA, and serotonin),>">? and block biosynthesis of
complex sphingolipids through inhibition of ceramide
synthase.>*5* They are also mitochondrial toxins and
apoptotic agents.*344:53

The symptoms and health problems associated with
mold-infested, water-damaged buildings involve multi-
ple organs, including the upper and lower respiratory
tracts, gastrointestinal tract, circulatory system, and the
central nervous system (CNS) and peripheral nervous

“system (PNS).252437 Recent studies have shown that
mold exposure has adverse effects on the nervous sys-
tem. Some mycotoxins have been shown to be tremor-
genic and are suspected as causative agents in wood-
trimmer’s disease? and tremorgenic encephalopathy;?’
mycotoxins present in household environments have
been found to affect dogs.?**

Two patterns of neurobehavioral impairment attribut-
able to mold exposure have been described. Kilburn?®
reported on 10 individuals who had impaired balance,
reaction time, color discrimination, visual fields, cogni-
tion, verbal recall, and trail making. A different group of
10 subjects exhibited impairments in all but measures
of color discrimination and visual fields. Abnormalities
in electroencephalograph (EEG) theta and delta activity,
visual evoked potentials, and brainstem evoked poten-
tials have been reported in children exposed to molds.?”
The EEG changes in the children were specific to the
frontotemporal area of the brain, suggesting a metabol-
ic encephalopathy. Six individuals had abnormal nerve
conduction. In addition, abnormal brainstem auditory
evoked potentials have been described in 4 children
with suspected mycotic neuromas who were exposed
to mixed molds, including Stachybotrys-chartarum and
Aspergillus species.>” Moreover, both neurobehav-
ioral*'>” and correlated quantitative EEG®' changes in-
dicative of right frontal lobe involvement have been re-
ported in patients with chronic exposure to mold in
water-damaged buildings. Mold exposure has also been
implicated in optic neuritis’” and multifocal choroidi-
tis.>® Finally, demyelination of the CNS has been re-
ported following exposure to ibotenic acid,* abuse of
“magic mushrooms” (Psilocybe),®® and gliotoxin.®" Be-
cause stachylysin has been found in human serum fol-
lowing exposure to S. chartarum,®* and mycotoxins are
present in indoor air and bioaerosols,’~'? it is impera-
tive that health complaints of occupants exposed to
molds in water-damaged buildings be taken seriously
and be investigated with appropriate diagnostic testing.

This communication describes 119 mold-exposed
patients who had multiorgan symptoms and peripheral
neuropathy. Complaints included severe fatigue, de-
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creased muscle strength, sleep disturbances, numbness
and tingling of extremities (with and without tremors of
the fingers and hands), and severe headache. Patients
had abnormal neurological examinations. Ninety-nine
of these individuals had abnormal nerve conduction ve-
locities (NCVs) in association with autoantibodies
against 9 neural antigens, whereas 20 had normal test
results. We present data on motor neuropathy, sensory
neuropathy, and mixed sensory—motor polyneuropathy,
as well as increased antibodies to neural antigens.

Materials and Method

Patients. The study population consisted of 119 pa-
tients (79 females and 40 males; mean age = standard
deviation [SD] = 41.3 = 12.9 yr). The patients had
health complaints and proven environmental exposure
to molds in their homes and/or workplaces. Mold ex-
posure was documented by Aerotech Laboratories
(Phoenix, Arizona). All patients were interviewed one-
on-one by the principal author (AWC) regarding expo-
sure history, as well as health problems and symptoms
for each organ system (e.g., CNS, PNS, respiratory, skin,
musculoskeletal). Mold-specific serum antibody tests
for S. chartarum, Penicillium, Aspergillus, Cladospori-
um, Alternaria, and Chaetomium, performed on each
patient by Immunosciences Lab., inc. (Beverly Hills,
California), verified exposure to molds. Some of these
data have been reported previously.63-63

We studied patients who had symptoms of peripher-
al neuropathy (e.g., tingling, tremors, loss of sensation
in extremities). Blood was drawn for serology testing for
neural antigens. NCV tests were performed at or near
the time of initial presentation as follows: all 119 pa-
tients were tested at 10.8 = 41 days; patients with ab-
normal NCVs (n = 99) were tested at 11.5 * 44 days;
and patients with normal NCVs (n = 20, controls) were
tested at 7.5 + 18 days.

Blood samples. Peripheral venous blood was collect-
ed and shipped at ambient temperature to Immuno-
sciences Lab., Inc. (Beverly Hills, California). Autoanti-
bodies (immunoglobulin 1gG, IgM, and IgA) against 9
neural antigens were assessed for each patient.

Neural antigens. Myelin basic protein (MBP), myelin-
associated glycoprotein (MAG), ganglioside (GM,),
chondroitin sulfate (CONSQ,), a-B-crystallin (crys-
tallin), and tubulin were purchased from Sigma-Aldrich
(St. Louis, Missouri). Neurofilament antigen (NAF) was
purchased from Boehringer Mannheim Roche (Indi-
anapolis, Indiana). MBP peptides 87-206 and myelin
oligodendroctye glycoprotein (MOG) peptides 21-4-,
61-80 were synthesized by Research Genetics
(Huntsville, Alabama).

Controls for neural antigens. The controls for deter-
mination of the mean = SD and 95% confidence inter-
vals (Cls) for the neural antigens consisted of 500
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healthy adult blood donor volunteers. The controls
were of similar age and sex distribution as the 119 pa-
tients.

ELISA testing. We used enzyme-linked immunosor-
bent assay (ELISA) to test for antibodies against 9 differ-
ent neural-specific antigens, as reported previously.66-8
Briefly, antigens were dissolved in methanol at a con-
centration of 1.0 mg/ml and then diluted 1:100 in 0.1
M carbonate-bicarbonate buffer (pH 9.5). Then, 50 pl of
the mixture was added to each well of a polystyrene
flat-bottom ELISA plate. Plates were incubated over-
night at 4 °C and then washed 3 times with 20 mM Tris-
buffered saline (TBS) containing 0.05% Tween 20 (pH
7.4). The nonspecific binding of immunoglobulins was
prevented by adding a mixture of 1.5% bovine serum
albumin (BSA) and 1.5% gelatin in TBS and then incu-
bating for 2 hr at room temperature, followed by incu-
bation overnight at 4 °C. Plates were washed as de-
scribed above, and serum samples diluted 1:100 in 1%
BSA-TBS were added to duplicate wells and incubated
for 2 hr at room temperature. Sera from patients with
multiple sclerosis (MS), polyneuropathies, and other
neurological disorders with known high titers of IgG,
IgM, and IgA against different neurological antigens
were used to rule out nonspecific antibody activities of
inter-assay and intra-assay variability. Plates were
washed, and peroxidase-conjugated goat antihuman
IgG, 1gM, or IgA antiserum (KPI [Gaithersburg, Mary-
land]), diluted 1:400 in 1% BSA-TBS, was added to
each well. The plates were incubated for an additional
2 hr at room temperature. After washing 5 times with
TBS-Tween buffer, the enzyme reaction was started by
the addition of 100 pl of o-phenylenediamine in citrate-
phosphate buffer containing hydrogen peroxide diluted
to 1:10,000 (pH 5.0). After 45 min, the reaction was
stopped with 50 pl of 2N sulfuric acid. The optical den-
sity was read at 492 nm with a microtiter reader (Dynex
Laboratories [Chantilly, Virginia]). Several control wells
containing all reagents except human serum were used
to detect nonspecific binding.

We calculated coefficients of intra-assay variation by
running 5 samples 8 times in 1 assay. Coefficients of
inter-assay variation were determined by measuring the
same samples in 6 consecutive assays. This replicate
testing established the validity of the ELISAs, deter-
mined the appropriate dilutions with minimal back-
ground, and detected IgG, IgM, and IgA against differ-
ent antigens. Sera from 500 asymptomatic blood donors
in southern California were used to calculate expected
ranges at 95% CI.

Neurophysiological tests. Bilateral peripheral nerve
studies involving nerve conduction and central re-
sponse (F wave) were performed on the 119 patients in
accordance with accepted techniques of the American
Society of Electroneurodiagnostic Technologists (Kansas
City, Missouri) and the American Neurological Associa-
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tion (Minneapolis, Minnesota).®”" The testing was per-
formed under the direct supervision of, and interpreted
by, a board-certified neurologist. Onset latency (ms),
amplitude (uV), and velocity (m/sec) were recorded for
4 motor nerves (median, ulnar, peroneal, and tibial).
The peak latency (ms) and amplitude (pV) were record-
ed for 3 sensory nerves (median, ulnar, and sural). F
wave and H reflex were recorded for the median, ulnar,
peroneal, and tibial nerves. The studies were conduct-
ed with a TECA Synergy Multimedia Electromyograph
with multisync color SYVGA monitor and Delux stimula-
tor probe (TECASyngery, Synergy Version 8.2 [Oxford
Instruments {Surry, U.K.}]). The motor axons of periph-
eral nerves that innervate somatic muscle were evaluat-
ed by recording the response following electrical stim-
ulation.

Statistical analysis. We performed critical 2-tailed t
tests on neural autoantibodies. Odds ratios (ORs) were
calculated for the data to determine the percentage of in-
dividuals with antibody titers that exceeded the maxi-
mum expected laboratory range (95% Cl) for each neur-
al autoantibody. For this calculation, data for patients
with abnormal and normal NCVs were combined.

Results

Neural autoantibodies. The mean = SD of autoanti-
bodies for each isotype (IgA, IgM, and 1gG) against each
neural antigen for patients with abnormal NCVs (n =
99), normal NCVs (n = 20), and asymptomatic blood
donor controls (n = 500) are given in Table 1. Rather
than repeating the data for each antineural antigen iso-
type, the salient features will be outlined briefly. In gen-
eral, the highest isotype titers detected were MBP,
MAG, tubulin, and. NAF. These were followed by the
other 5 neural antigens: GM;, sulfatide, MOG, crystal-
lin, and CONSQ,.

We performed critical 2-tailed t tests for each isotype
titer against neural antigens, comparing abnormal vs.
normal patients, abnormal patients vs. controls, and
normal patients vs. controls for each isotype (statistical
data not shown). With respect to 1gG titers, the only sig-
nificant difference between abnormal and normal pa-
tients was NAF (p < 0.01). 1gG titers for all isotypes for
abnormal and normal patients differed significantly
from controls (p < 0.001). IgM titers for neural antigens
were significantly different between abnormal and nor-
mal patients for glutamate receptor (p < 0.01), tubulin
(p < 0.01), NAF (p < 0.01), and CONSO, (p < 0.05).
[gM titers against each neural antigen for abnormal pa-
tients vs. controls (p < 0.001) and for normal patients
vs. controls (p < 0.001) were significantly different. The
only significant difference between patients with abnor-
mal vs. normal IgA titers was NAF (p < 0.05). Compar-
ison of abnormal and normal patients vs. controls re-
vealed I[gA titers for each neural antigen which were
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significantly different (p < 0.01), except for normal crys-
tallin titers (p < 0.05).

The percentages of individuals with autoantibodies
for each isotype that exceeded the laboratory expected
range at 95% Cl against the neural antigens are pre-
sented in Table 2. 1gG titers for abnormal patients ex-
ceeded the 95% CI for sulfatide (17.2%), MOG
(10.1%), crystallin (10.1%), glutamate receptor (11.1%),
tubulin (57.6%), CONSOy {27.3%), and NAF (6.1%);
MBP (4%), MAG (4%), and GM, (0%) did not exceed
their expected ranges. Similar observations for normal
patients were made for sulfatide (20%), MOG (20%),
crystallin (20%), tubulin (30%), and CONSO; (20%),
except for MBP (0%), GM; (0%), glutamate receptor
(0%), and NAF (0%). IgM titers for abnormal patients
exceeded those of controls for all neural antigens (range
= 17.2%-42.4%) except GM; (0%). In normal patients,

IgM titers did not exceed control values for GM; (0%),
sulfatide (5%), MOG (5%), glutamate receptor (0%),
and tubulin (5%), whereas MBP (20%), MAG (30%),
crystallin (25%), CONSO, (20%), and NAF (20%) ex-
ceeded control values. IgA autoantibodies in abnormal
patients for each neural antigen exceeded control val-
ues for MBP (20.3%), MAG (23.2%), crystallin (8.1%),
glutamate receptor (7.1%), tubulin (8.1%), CONSO,
(10.5%), and NAF (10%). With respect to normal pa-
tients, only MAG (15%), tubulin (10%), and NAF (10%)
exceeded values for controls.

The percentage of patients who had ORs that ex-
ceeded the 95% Cl are given in Table 3. The ORs for
IgG were not significant for MBP (0.66) and MAG
(1.05), whereas those for all other neural autoantibod-
ies were significant as follows: sulfatide (3.36), crys-
tallin (6.53), glutamate receptor (10.08), tubulin (55.1),

Table 1.—Autoantibody Titers against 9 Neural Antigens in Patients with Abnormal Nerve Conduction Velocities (NCVs) (n = 119) and
Those with Normal NCVs (n = 20), vs. Asymptomatic Controls (N = 500), for Each Isotype
1gG lgM IgA
Abnormal Normal Controls Abnormal Normal Controls ~ Abnormal Normal Controls

Neural autoantibody x  SD x 5D X SD X SD x SD X SD x SD X SD x SD
MBP 63.3 21.6 54.7 18.3 27.0 12.2 50.8 243 47.0 9.2 251 13.2 185 6.0 168 4.7 7.2 3.7
MAG 63.6 188 69.0 182 260 7.3 51.0 16.1 48.1 124 245 8.1 194 76 175 74 83 24
GM, 15.8 6.7 16.4 7.0 11.1 2.8 16.4 6.3 156 45 104 3.3 123 6.2 126 44 115 3.6
Sulfatide 16.7 6.2 17.5 6.7 12.2 3.4 17.2 6.3 151 43 11.3 3.7 133 9.1 124 490 9.4 31
MOG 15.9 59 17.5 6.6 89 55 182 6.3 16.8 4.7 84 55 120 35 114 23 7.9 4.6
Crystallin 16.1 5.8 16.5 6.7 11.9 2.5 18.7 69 19.0 8.2 121 29 136 75 132 47 11.1 43
Glutamate 10.2 3.4 9.2 1.5 7.0 28 106 3.7 93 12 76 20 95 37 85 2.1 8.1 2.1
Tubulin 64.1 16.8 58.7 11.9 23.7 9.2 419 185 33.0 7.8 18.1 7.9 179 16.1 14.7 3.7 9.8 2.6
CONSO;, 1.5 4.7 10.2 2.1 7.7 22 11.8 49 104 20 56 21 110 7.7 92 14 7.0 2.7
NAF 61.6 239 533 10.7 26.4 11.3 53.1 20.7 44.1 12.0 247 103 18.2 82 164 5.4 8.7 3.4
Notes: Ig = immunoglobulin, X = mean, SD = standard deviation, MBP = myelin basic protein, MAG = myelin-associated glycoprotein,
GM, = ganglioside, MOG = myelin oligodendroctye glycoprotein, CONSQ, = chondroitin sulfate, and NAF = neurofilament antigen.

Table 2.—Percentages of Individuals with Autoantibody Titers that Exceeded Expected Ranges (95% Confidence Intervals), for Patients
with Abnormal Nerve Conduction Velocities (NCVs) and Those with Normal NCVs, vs. Asymptomatic Controls, for Each Isotype
1gG igM IgA

Abnormal Normal Controls ~ Abnormal Normal Controls ~ Abnormal Normal Controls
Neural autoantibody (%) (%) (%) (%) (%) (%) (%) (%) (%)
MBP 4.0 0 5 34.3 20 2 20.2 5 1
MAG 4.0 5 4 42.4 30 3 23.2 15 2
GM;, 0.0 0 2 0.0 0 4 4.0 5 5
Sulfatide 17.2 20 6 17.2 5 5 3.0 5 2
MOG 10.1 20 5 253 5 4 1,0 0 3
Crystallin 10.1 20 2 27.3 25 4 8.1 5 3
Glutamate 11.1 0 1 15.2 0 0 7.1 0 2
Tubulin 57.6 30 2 39.4 5 2 8.1 10 1
CONSO, 27.3 20 2 33.3 20 1 10.5 5 2
NAF 6.1 0 3 41.4 20 2 18.2 10 1
Notes: Ig = immunoglobulin, MBP = myelin basic protein, MAG = myelin-associated glycoprotein, GM; = ganglioside, MOG = myelin
oligodendroctye glycoprotein, CONSO, = chondroitin sulfate, and NAF = neurofilament antigen.
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CONSQ, (17.26), and NAF (5.15). The OR for GM,
could not be calculated because of the 0 value for the
patients. The ORs for IgM neural autoantibodies were
significant for all antigens, and ranged from 3.39 to
44.6. The ORs for GM; and glutamate receptor were
not calculated because of 0 values for the controls.
With respect to IgA autoantibodies, the ORs for sul-
fatide (1.7) and MOG (0.82) were not significant,
whereas those for the other neural antigens were signif-
icant as follows: MBP (21.2), MAG (13.7), crystallin
(2.65), glutamate receptor (3.03), tubulin (9.08),
CONSQO, (4.99), and NAF (2). GM; could not be calcu-

lated because of 0 values; the 95% Cl for MOG was not
calculated because of the value of 1 in controls.

The percentages of individuals with autoantibody
titers that exceeded the maximum 95% ClI for expected
laboratory ranges, along with ORs, are presented in
Table 4. We calculated these data for abnormal, nor-
mal, and control patients as follows: If an individual
had only 1 isotype against a neural antigen (i.e., 1gG),
that person was given the same score as an individual
with 2 or more isotypes (i.e., IgG + IgM + IgA). The per-
centages of individuals with autoantibodies against
each neural antigen were highest among the abnormal
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Table 3—0Odds Ratios (ORs) and 95% Confidence intervals (Cls) for Autoantibodies for Each isotype Presented
in Table 1

IgG IgM IgA
Neural autoantibody OR 95% ClI OR 95% Cl OR 95% Cl
MBP 0.66 1.92,0.22 22.98 47.9,11.0 21.2 57.4,7.8
MAG 1.05 3.86, 0.39 21.86 40.9,11.59 13.7 6.2,28.8
GM, o ok ok
Sulfatide 3.36 6.1,1.84 3.39 5.6, 2.05 1.7 0.52,5.5
MOG 2.53 4.95, 1.25 6.7 12.2,3.5 0.82 —t
Crystallin 6.53 15.2,2.83 8.83 16.4, 4.9 2.65 1.13,6.17
Glutamate 10.08 29.4,3.3 —* 3.06 8.17, 1.14
Tubulin 55.1 112.4, 27.1 24.8 50.9, 11.8 9.08 38.02,26.8
CONSOy4 17.26 36.6, 8.2 44.6 116.7, 16.4 4.99 2.05,11.9
NAF 5.15 13.06, 1.88 29.8 62.2,14.9 20.0 7.26, 54.6
Notes: Ig = immunoglobulin, MBP = myelin basic protein, MAG = myelin-associated glycoprotein, GM; = gan-
glioside, MOG = myelin oligodendroctye glycoprotein, CONSO, = chondroitin sulfate, and NAF = neurofilament
antigen. For these calculations, patients with abnormal nerve conduction velocities (NCVs) were grouped with
those with normal NCVs and compared vs. controls.
*Not calculated because of zero values (refer to Table 2).
+Not calculated because of the value of 1 in a cell (refer to Table 2).

Table 4.—Percentages of Individuals with 1 or More Isotypes for Each Neural Antigen that
Exceeded the Maximum 95% Confidence Interval (Cl) Titer

Abnormal Normal Controls

(n=119) (n=20) (n = 500)
Neural autoantibody (%) (%) (%) OR 95% ClI
MBP 47.5 20 8 8.63 11.5,6.4
MAG 54.5 45 9 ’ 1.4 16.4,7.8
GM;, 4.0 5 11 0.91 1.7,0.48
Sulfatide 30.3 25 13 2.8 4.4,1.7
MOG 32.3 25 12 3.3 4.85,2.2
Crystallin 35.4 35 9 55 8.0,2.7
Glutamate 26.3 0 3 9.0 17.6,4.6
Tubulin 09.7 35 5 33.58 56.8,19.1
CONSO, 46.5 30 5 14.75 25.3,8.58
NAF 50.5 25 5 16.3 16.3,12.4

Notes: MBP = myelin basic protein, MAG = myelin-associated glycoprotein, GM; = ganglioside,
MOG = myelin oligodendroctye glycoprotein, CONSOy4 = chondroitin sulfate, and NAF = neu-
rofilament antigen. The percentages were determined as follows: If a patient had 1 isotype (e.g.,
immunoglobulin [Ig]G, IgM, or IgA), that patient was given the same score as a patient with 2 or
more isotypes. Thus, the total percentages for patients with abnormal nerve conduction velocities
(NCVs), normal NCVs, and controls were less than the totals for each isotype as presented in
Table 1. For simplicity, the data for patients with abrnormal and normal NCVs were combined to
obtain the odds ratios (ORs).
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patients (range = 26.3%-69.0%) when compared with
controls (range = 3%-13%), with the exception of GM
(4%). Similarly, the normal patients had an increased
percentage of individuals with higher titers (range =
20%—-45%) when compared with the controls, with the
exception of GM; (5%) and glutamate receptor (0%).
The ORs were significant (95% CI) for all neural anti-
gens, except for GM; (0.91). The ORs were highest for
tubulin (33.58) and decreased, in descending order, for
NAF (16.3), CONSO, (14.75), MAG (11.4), glutamate
receptor (9.0), MBP (8.63), crystallin (5.5), MOG (3.3),
and sulfatide (3.3).

NCV testing. No changes or abnormalities were ob-
served for F and H waves in the abnormal or normal pa-
tients (data not shown).

The data obtained from the NCV studies for motor
nerves and sensory nerves are summarized in Tables 5
and 6. Patients with abnormal findings comprised 3
groups, as follows: (1) mixed sensory-motor polyneu-
ropathy (n = 55), (2) motor neuropathy (n = 17), and (3)
sensory neuropathy (n = 27). There were 20 patients
with no abnormalities (controls). We compared the data
obtained for the 20 controls with data for the 3 groups
of abnormal patients (mixed, motor, and sensory neu-
ropathies), for statistical purposes.

Results for the mixed polyneuropathy group differed
significantly from controls. Latencies for the median
(4.2 £ 1.2 ms, p < 0.001), ulnar 3.13 = 1.1 ms, p <
0.05), peroneal (5.1 = 1.4 ms, p < 0.001), and tibial
motor nerves (5.5 + 2.9 ms, p < 0.001) were signifi-

Table 5.—Neuropathies Experienced by Patients with Abnormal Nerve Conduction Velocity

(NCV) Measurements (n = 119), vs. Controls with Normal Values (n = 20), by NCV Parameter

Tested

Neuropathy with abnormal NCV

Mixed Motor Sensory Controls
(n=55) (n=17) (n=27) (n=20)

NCV parameter X D X SD X SD X SD

Median latency (ms) 4.2 1.2% 3.6 1.1 3.4 0.36 3.3 0.4

Median amplitude (puV) 9.5 4.3 7.6 3.3t 10.8 2.6 10 3.3

Median velocity (m/sec)  56.5 7.8% 559 5.3% 58.1 7.4 61.5 7.1

Ulnar latency (ms) 3.13 1.1+ 3.7 2.05% 2.7 0.38 2.56 0.53

Ulnar amplitude (pV) 9.9 3.7 9.9 2 9.9 1.8 10 3.13

Ulnar velocity (m/sec) 60.9 9.9§ 604 7.4% 65.1 6.6 66.2 5.4

Peroneal latency (ms) 5.1 1.4% 5.5 1.2* 4.7 0.52* 3.9 0.86
(n=54) (n=26)

Peroneal amplitude (uV) 5.6 3.2 4.2 1.9§ 6.05 2.2 6.6 3
(n=54) (n=26)

Peroneal velocity (m/sec) 52.5 12.7 47.5 13.3f 52.2 5.8 58.2 13.8
(n=54) (n=26)

Tibial latency (ms) 5.5 2.9*% 6.3 38 4.2 0.55 4 1
(n=53)

Tibial amplitude (pV) 9.8 6 8.1 4.8t 13.6 4.8 12.7 6.8
(n=53)

Tibial velocity (m/sec) 46.6 11.3t 473 5.5+ 46.6 448§ 52.3 8.3
(n=53)

Median latency (ms) 4.2 1.3* 3 0.16 4.2 1.5% 3.08 0.17
(n=>54) (n=16)

Median amplitude (V) 27.1 15.9 40.3 152 324 205 35.1 15.6
{n=54) {n=16)

Ulnar latency (ms) 3.7 1.41*% 2.7 0.2 4.6 2.3* 2.54 0.25
(n=54) (n=16) :

Ulnar amplitude (pV) 27 185t 319 149 28.1 18.6 35 153
(n=54) (n=16)

Sural latency (ms) 4.9 3.2% 3.8 0.28 4.4 1.4t 3.8 0.32
(n=44) (n=11) (n=24) (n=17)

Sural amplitude (m/sec) 11 8.4t 142 5.9 1.2 10.5t 217 19.2
(n=44) (n=11) (n=24) (n=17)

Notes: With respect to the 20 normal patients, no abnormal values were observed for each mea-

surement except for the tibial motor nerve measurements, in which the velocity was slightly re-

duced (41 ms), with the cutoff for normal being > 41 ms. For cases in which the number of pa-

tients was not the same as that shown in the column heading, the actual number (n) is given

within the table.

*p < 0.001.

p < 0.05.

p < 0.02.

§p < 0.01.
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Table 6.—Percentages of Individuals with Various Numbers
(0-7) of Nerves Showing Abnormal Nerve Conduction
Measurements (Latency Onset, Amplitude, or Velocity),
for Mixed (Motor and Sensory), Motor, and Sensory
Neuropathies

Neuropathy
Mixed Motor Sensory
No. of nerves with (n=55) (n=17) (n=27)
abnormal measurements (%) (%) (%)
0 0.0 0.0 111
1 1.8 41.2 33.3
2 38.2 471 33.7
3 23.6 5.9 18.5
4 21.8 5.9 —
5 10.9 — —
6 1.8 — —
7 1.8 — —

Notes: Among the 20 controls, 1 individual had an abnormal
measurement for the tibial motor nerve {velocity = 41 ms), re-
sulting in an abnormal rate of 0.4% for all motor nerve mea-
surements. No abnormalities were seen among the controls for
the other 4 motor nerves or the 3 sensory nerves.

cantly increased vs. controls. Amplitudes for all motor
nerves were not significantly different from controls.
Velocities for the median (56.5 + 7.8 m/sec, p < 0.02),
ulnar (60.9 = 9.9 m/sec, p < 0.01), and tibial (46.6 =
11.3 m/sec, p < 0.05) motor nerves were significantly
decreased vs. controls. Latencies for the median (4.2 +
1.3 ms, p<0.001), ulnar (3.7 £ 1.41 ms, p < 0.02), and
sural (4.9 = 3.2 ms, p < 0.02) sensory nerves were Sig-
nificantly increased vs. controls. Amplitudes for the
ulnar (27 £ 18.5 pV, p < 0.05) and sural (11 £ 8.4 pV, p
< 0.5) sensory nerves were significantly decreased com-
pared with controls.

In patients with only motor nerve neuropathy, laten-
cies for ulnar (3.7 £ 2.05 ms, p < 0.02), peroneal (5.5 =
1.2 ms, p < 0.001), and tibial (6.2 £ 3 ms, p < 0.01)
nerves were significantly increased; amplitudes for the
median (7.6 = 3.3 pV, p < 0.05), peroneal (4.2 1.9 pV,
p < 0.01), and tibial (8.1 = 4.8 pV, p < 0.5) nerves were
significantly decreased; and velocities for the median
(55.9 + 5.3 m/sec, p < 0.01), ulnar (60.4 £ 7.4 m/sec, p
< 0.02), peroneal (47.5 + 13.3 m/sec, p < 0.05), and tib-
ial (47.3 = 5.5 m/sec, p < 0.05) nerves were significant-
ly slower than the controls. Latencies and amplitudes
for the sensory nerves (median, ulnar, and tibial) were
not significantly different from control values.

In patients with only sensory neuropathy, latencies
for the median (4.2 £ 1.5 ms, p < 0.001), ulnar (4.6 =
2.3 ms, p < 0.001), and sural (4.4 = 1.4 ms, p < 0.05)
nerves were significantly increased vs. controls; ampli-
tudes of the sural nerve (11.2 = 10.5 pV, p < 0.05) were
significantly decreased; and all neurophysiological
measurements tended to differ from the control values.
None of the measurements for motor nerves in this
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group—except for peroneal latency (p < 0.001) and am-
plitude (p < 0.01)—were different from the controls.

Table 6 summarizes the data for the percentages of pa-
tients with various numbers of nerves that demonstrated
abnormal conduction. In those patients with mixed neu-
ropathy, all nerves had abnormal measurements with a
distribution as follows: 1 involved nerve (5.5%), 2 in-
volved nerves (38.2%), 3 involved nerves (23.6%), 4 in-
volved nerves (21.8%), and 5 or more involved nerves
(14.5%). Of those patients who exhibited motor neu-
ropathy, 41.2% had only 1 involved nerve, whereas
58.9% had 2 or more involved nerves. Patients with sen-
sory neuropathy had the following distribution: 11.1%
had nerves with no abnormal findings, 33.3% had only
1 nerve with abnormal measurements, and 52.2% had 2
or more nerves with abnormal measurements.

Discussion

All patients in this study had documented exposure to
molds in their homes and/or workplaces. They also had
significantly elevated antibodies to molds and to myco-
toxins, which confirmed exposure.®®%> In addition,
multiple organ symptoms were present, as reported pre-
viously.®3 In this particular group of patients, additional
health complaints consisted of symptoms of peripheral
neuropathy (i.e., tingling, numbness, tremors, and mus-
cle weakness in the extremities). Thus, we evaluated
these patients for the presence of antibodies to 9 neur-
al antigens, as well as for evidence of abnormalities in
peripheral nerve conduction. All patients had signifi-
cant increases in autoantibodies against neural antigens
(Tables 1-4). Abnormalities in latencies, amplitudes,
and velocities of selected peripheral nerves (Tables 5
and 6), and peripheral neuropathy, were observed in 99
patients, whereas 20 symptomatic patients had normal
NCV measurements.

Examination of the patients’ antibody titers revealed
that 1gG antibody titers to the neural antigens between
patients with abnormal vs. normal NCVs were not sig-
nificantly different, with the exception of NAF (p <
0.01). However, when compared with healthy controls,
the difference between IgG titers for abnormal vs. nor-
mal patients was highly significant (p < 0.001). In con-
trast, 1gM titers in abnormal patients were consistently
elevated when compared with normal patients, with
significant differences for CONSO, (p < 0.05), gluta-
mate receptor (p < 0.01), tubulin (p < 0.01), and NAF (p
< 0.01). Autoantibodies in both abnormal and normal
patients showed significant elevations compared with
controls (p < 0.001). With respect to IgA antibodies,
NAF titers were significantly elevated in abnormal vs.
normal patients. The titers for both abnormal and nor-
mal patients were significantly elevated compared with
controls, with the exception of GM; and glutamate re-
ceptor. Thus, we concluded that exposure to molds,
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and symptoms of peripheral neuropathy, are associated
with autoantibodies to 9 different neural antigens.
These data support and extend the observations of Gray
et al.,’® who demonstrated increased antibodies to
myelin and NAF in mold-exposed individuals.

Autoantibodies to neural antigens have been report-
ed for several neurological conditions.®®72 Pestronk et
al.’¢ confirmed that elevated titers of MAG antibodies in
patients are relatively specific for sensory and motor
polyneuropathy syndromes with demyelination. NCVs
were used to confirm the demyelinating changes in
these patients. Of the patients studied, 92% with IgM
antibodies to MAG had physiologic evidence of de-
myelination.®® MS patients have shown antibodies to
- myelin, MOG, MBP, a-s-crystallin, and complement-
mediated demyelination.®8”% Anti-ganglioside, anti-gly-
colipid, anti-sulfatide, anti-MAG, anti-tubulin, and anti-
CONSQ, antibodies have been demonstrated in motor,
sensory, and polyneuropathies with demyelination.”2-%
IgM isotypes to sulfatide,”*7>77 ganglioside,”® and
MAGS33 are correlated with electrophysiological periph-
eral nerve abnormalities. Moreover, antigangliosides
and galactocerebroside antibodies are associated with
infections from Campylobacter jejuni and Mycoplasma
pneumoniae in patients with Guillain-Barre syndrome.®!
In addition, 1gM, anti-MAG, anti-glycolipids, and anti-
NAF antibodies are present in individuals with chronic
demyelinating conditions of the nervous system.67.73.83.86
Thus, we suggest that the presence of autoantibodies to
neural antigens in our patients is the result of exposure
to toxic metabolites'3-236%6T of molds, or may result
from an infectious process. The presence of abnormal T
and B cell function of the immune system*® in nasal,*'
pulmonary,3°4° and neurologic®” %8 infections by molds
supports this conclusion. Finally, we have observed in-
creased T cell activation; C3 and C4 complements; and
IgA, IgM, and 1gG immune complexes in 33 patients
who had chronic exposure to molds in a water-dam-
aged building, which suggests an inflammatory process
(manuscript forthcoming).

The ORs in Table 3 are also revealing. IgM isotypes
against the neural antigens had ORs consistently greater
{range = 3.39-44.6) than those for IgG isotypes (range
= 0.66-17.26), with the exception of antitubulin (55.1
vs. 24.8). The ORs indicate an increased risk of devel-
oping antineural antibodies, but also may suggest that
IgM isotypes are more consistent with symptomatic ac-
tive or progressive neuropathy than are 1gG isotypes,
and may represent an ongoing acute or subacute
process. As mentioned earlier, IgM antibodies to various
neural antigens have been associated with neurophysi-
ological and pathological changes characteristic of var-
ious neuropathies. Finally, the ORs in Table 4 for the
percentages of individuals with 1 or more isotypes
against the neural antigens show a relative increased
risk (range = 2.8-33.58) of developing autoantibodies.
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The only exception was GM,; autoantibodies (OR =
0.91). Thus, we concluded that individuals exposed to
molds in a water-damaged building have an increased
risk of developing antineural antibodies. Additional
work is needed to determine at what point these
processes hecome irreversible.

Our neurophysiological data revealed 3 different
types of peripheral neuropathies: mixed sensory—motor
polyneuropathy (55 abnormal patients), motor neuropa-
thy (17 abnormal patients), and sensory neuropathy (27
abnormal patients), as well as patients who exhibited
symptoms but had no abnormal electrophysiological
findings (20 normal controls) (Table 5). The differences
between the 20 normal patients and the 99 abnormal
patients are likely attributable to the significant increase
in 1gG and IgM autoantibodies to NAF, tubulin, gluta-
mate receptor, and CONSOy, observed in the abnormal
patients. The role that IgA antibodies play is unclear at
this time. Additional observations are needed to clarify
the role of each isotype (IgA, IgM, and igG) and to de-
termine which neural autoantibodies contribute to the
observed neuropathies.

The increased latencies for motor and sensory nerves
observed in the 55 patients with mixed neuropathy sug-
gest a demyelinating process.®* The increased latencies
were accompanied by a decrease in velocities for the
median, ulnar, peroneal, and tibial nerves. All three
sensory nerves (median, ulnar, and sural) exhibited in-
creased latencies and decreased amplitudes. Thus, the
polyneuropathy observed in these patients appears to
be a demyelinating process with decreased number and
size of fibers (decreased amplitudes) and chronic in-
volvement of the nerve (decreased velocities).”28
Those with motor neuropathies (17 patients) had de-
creases in latencies (ulnar, peroneal, and tibial nerves),
decreased amplitudes (median, peroneal, and tibial
nerves), and decreased velocities (median, ulnar, per-
oneal, and tibial nerves). This appears to be a diffuse
neuropathy and may involve some demyelination.® Fi-
nally, those with sensory neuropathies (27 patients) had
increased latencies for all 3 nerves, whereas the sural
nerve had a decreased amplitude. The increased laten-
cies and decreased amplitude of the these nerves sug-
gest that demyelination is occurring.*®

The severity of the neuropathies experienced by the
patients in our study is implicit as a result of the in-
volvement of several nerves (Table 6). With respect to
the mixed-neuropathy patients, only 1.8% had abnor-
malities in only 1 nerve, whereas 38.2% had at least 2
nerves involved. The remaining patients (59.5%) had 3
or more nerves with abnormal neurophysiological
recordings. Impairments in the patients with motor neu-
ropathy were slightly less dramatic, with 41.2% having
a single nerve involvement, and the remainder having 2
or more nerves involved. Finally, in those patients with
sensory neuropathy, 33.3% had 1 nerve and 52.2% had
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2 or more nerves involved. Thus, we concluded that the
neuropathies in these patients were severe and in many
cases involved several nerves.

In summary, 119 individuals exposed to mold col-
onies in water-damaged buildings were found to have
autoantibodies directed against 9 different neural anti-
gens. Neurophysiological recordings for latencies, am-
plitudes, and velocities on 4 motor nerves and 3 senso-
ry nerves revealed peripheral neuropathies in 99
patients {83%). Three abnormal conditions were found:
mixed sensory-motor polyneuropathy, motor neuropa-
thy, and sensory neuropathy. We recommend that
mold-exposed individuals with symptoms of neuropa-
thy be evaluated for antibodies against neural antigens
and for neurophysiological abnormalities. Additional
work is needed to correlate and clarify the extent of the
peripheral nerve pathology and demyelination, as well
as the role of neural autoantibodies in this process.
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