Cluster of *Fusarium verticillioides* bloodstream infections among immunocompetent patients in an internal medicine department after reconstruction works in Larissa, Central Greece

S.P. Georgiadoua,\dagger, A. Velegrakib,\dagger, M. Arabatzisb, I. Neonakisc, S. Chatzipanagiotoud, G.N. Dalekosa, E. Petinakic,*

aDepartment of Medicine and Research Laboratory of Internal Medicine, Medical School, University of Thessaly, Thessaly, Greece
bMycology Research Laboratory, Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
cDepartment of Microbiology, Medical School, University of Thessaly, Thessaly, Greece
dDepartment of Biopathology and Clinical Microbiology, Athens Medical School, Aegion Hospital, Athens, Greece

ARTICLE INFO

Article history:
Received 11 September 2013
Accepted 28 January 2014
Available online xxx

Keywords:
Fusarium verticillioides
Reconstruction
Nosocomial outbreak

SUMMARY

Background: *Fusarium* spp. can cause disseminated infections, particularly in immunocompromised patients. *Fusarium verticillioides* is a human pathogen, and sporadic cases of fusariosis have been reported.

Aim: To report a nosocomial cluster of *F. verticillioides* bloodstream infections among seven immunocompetent inpatients following reconstruction works.

Methods: Identification was performed using macroscopic and microscopic morphology, and molecular assays (sequencing the nuclear ribosomal internal transcribed spacer region and translation elongation factor-1\(\alpha \) gene). Susceptibility testing was performed in accordance with the guidelines of the Clinical and Laboratory Standards Institute. Environmental surveillance specimens were taken and cultured on Sabouraud dextrose agar plates.

Findings: In total, 16 blood cultures obtained from the seven patients were positive for *F. verticillioides*. All surveillance cultures were negative.

Conclusions: In order to prevent fungaemia, it is important to implement effective infection control measures, before, during and after demolition and construction activities in healthcare settings.

\(\copyright \) 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

Introduction

Fusarium spp. are filamentous fungi, widely distributed in soil and plants, that can infect humans and animals, causing superficial locally invasive or disseminated disease.1,2 Infection is mainly through inhalation of air-borne conidia or via breaks in the skin due to trauma and/or burns. Contamination of hospital...
water systems has been reported to result in dispersal of airborne conidia. Patients undergoing haematopoietic stem cell transplantation or solid organ transplantation, those with haematological malignancies and those undergoing immunosuppressive therapy are at high risk of fusariosis. Although *Fusarium verticillioides* (formerly *Fusarium moniliforme*) is considered to be one of the most common *Fusarium* spp., information regarding its clinical significance is limited, and is mainly found in case reports of infections in immunodeficient patients. This article describes a cluster of *F. verticillioides* bloodstream infections among immunocompetent patients in an internal medicine department in Central Greece following reconstruction works, and the control measures implemented.

Methods

Setting

The study institution is a 650-bedded tertiary care hospital that serves a population of approximately one million people. The internal medicine department has 44 beds distributed in five four-bedded units, nine two-bedded units and six single rooms. All 20 rooms are on the same floor, and none of the rooms have high-efficiency particulate air filters or negative pressure. The internal medicine department admits patients 24 h/day, four days/week, making simultaneous evacuation of the entire unit impossible.

Reconstruction works

The floors of all rooms in the internal medicine department were reconstructed over a seven-day period (1st–7th November 2012). Each day, three different rooms were evacuated for reflooring. The air-conditioning unit of each room was dismantled and disinfected. Additional measures, such as sealing rooms with plastic coverings, were not implemented. After renovation, each room was cleaned thoroughly and aerated for 24 h before the return of the patients; no environmental cultures were taken at this time. After the outbreak, all rooms in the internal medicine department were disinfected with quaternary ammonium fungicidal compounds, and surveillance cultures were taken.

Patients

Between 8th and 26th November 2012, seven cases of fever with fungaemia occurred among inpatients in the internal medicine department. These patients were distributed in four closely located rooms. All patients were elderly males (median age 77 years, range 63–86 years). According to their clinical data, none of the seven patients were malnourished. Six of the seven patients did not have any risk factors for fusarium infection, such as neutropenia, or hepatic or renal insufficiency. One patient with idiopathic thrombocytopenic purpura was on methylprednisolone therapy. Epidemiological data of the patients and final outcomes are shown in Table I.

Survellance specimens during the outbreak

After the third case of fungaemia, environmental swab samples were taken in all rooms of the internal medicine department, before and after disinfection, in order to identify the source of the outbreak. Swabs were taken from consumables, benches, incubators, porous materials (e.g. blankets and

<table>
<thead>
<tr>
<th>Age/sex</th>
<th>Date of admission</th>
<th>Cause of admission</th>
<th>Date of positive blood cultures</th>
<th>Source of positive blood cultures</th>
<th>Treatment</th>
<th>Outcome</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>74/M</td>
<td>02/11/2012</td>
<td>UTI/BSI</td>
<td>08/11/2012</td>
<td>Peripheral</td>
<td>Yes</td>
<td>Death</td>
<td>Date of death 01/12/2012</td>
</tr>
<tr>
<td>85/M</td>
<td>02/11/2012</td>
<td>UTI/BSI</td>
<td>26/11/2012</td>
<td>Central venous catheter</td>
<td>Yes</td>
<td>Survival</td>
<td>Discharged 12/12/2012</td>
</tr>
<tr>
<td>86/M</td>
<td>08/11/2012</td>
<td>Endocarditis—spondylodiscitis</td>
<td>12/11/2012</td>
<td>Peripheral</td>
<td>No</td>
<td>Death</td>
<td>Date of death in ICU 20/11/2012</td>
</tr>
<tr>
<td>70/M</td>
<td>15/09/2012</td>
<td>ITP</td>
<td>17/11/2012</td>
<td>Peripheral</td>
<td>Yes</td>
<td>Death</td>
<td>Date of death 11/12/2012</td>
</tr>
<tr>
<td>63/M</td>
<td>13/10/2012</td>
<td>Pneumonia</td>
<td>18/11/2012</td>
<td>Peripheral</td>
<td>Yes</td>
<td>Death</td>
<td>Date of death in ICU 12/12/2012</td>
</tr>
<tr>
<td>82/M</td>
<td>10/11/2012</td>
<td>Pneumonia</td>
<td>02/12/2012</td>
<td>Peripheral</td>
<td>Yes</td>
<td>Survival</td>
<td>Discharged 30/12/2012</td>
</tr>
<tr>
<td>80/M</td>
<td>18/11/2012</td>
<td>BSI</td>
<td>26/11/2012</td>
<td>Central venous catheter</td>
<td>Yes</td>
<td>Survival</td>
<td>Discharged 07/01/2013</td>
</tr>
</tbody>
</table>

M, male; UTI, urinary tract infection; BSI, bloodstream infection; ICU, intensive care unit; ITP, idiopathic thrombocytopenic purpura.

Due to Klebsiella pneumoniae.

Due to Proteus spp.

Due to Staphylococcus aureus (meticillin sensitive).

Due to K. pneumoniae and Serratia marcescens.

Due to S. marcescens.

Due to Proteus spp., Escherichia coli and Providencia stuartii.

Please cite this article in press as: Georgiadou SP, et al., Cluster of *Fusarium verticillioides* bloodstream infections among immunocompetent patients in an internal medicine department after reconstruction works in Larissa, Central Greece, Journal of Hospital Infection (2014), http://dx.doi.org/10.1016/j.jhin.2014.01.011
was transferred to the internal medicine department from a long-term care facility because of a two-day history of fever and malaise. Urosepsis was suspected. Urine grew Klebsiella pneumoniae producing extended-spectrum beta lactamase, and the patient was treated with meropenem. Six days later, fever recurred and blood cultures revealed Fusarium spp. Minimum inhibitory concentrations of antifungals and the candins were recorded: amphotericin B (>32 mg/L), 5-fluorocytosine (>32 mg/L), anidulafungin (>16 mg/L), caspofungin (>16 mg/L), micafungin (>16 mg/L), itraconazole (>32 mg/L), posaconazole (32 mg/L) and voriconazole (1 mg/L). Although the new echinocandin drugs such as micafungin and caspofungin are very important for treating common aspergillus and candida infections, they are inactive for Fusarium spp. and Mucor spp. The patient was commenced on intravenous voriconazole (6 mg/kg on day 1, then 4 mg/kg) immediately (i.e. the same day as the fusarium-positive culture).

A new chest X-ray showed bilateral pulmonary infiltrates. Microscopic examination and cultures of sputum specimens were negative for Fusarium spp. Bronchoalveolar lavage was not performed as bronchoscopy was not clinically indicated. The patient responded initially to the antifungal treatment with remission of fever, but his condition deteriorated on day 24 and he presented with hypotension and lethargy. Broad-spectrum antibiotics were added empirically and new blood cultures were obtained, which were positive for Fusarium spp. alone.

The patient died 30 days after admission. Death was attributed to fusarium infection, as the requested autopsy was denied. Following the first case, six other patients (all male, median age 80 years, range 63–86 years) were diagnosed with fusarium bloodstream infections (Table 1).

All fusarium isolates had identical MICs, with the lowest (1 mg/L) recorded for voriconazole. Six of the seven patients received intravenous voriconazole; one patient, who was not treated, died in the intensive care unit before blood cultures flagged positive for Fusarium spp. Overall, four of the seven patients with fusarium bloodstream infection died (median time of death 24 days after diagnosis, range seven to 30 days) (Table 1) but autopsy was denied in all cases.

In total, 16 blood cultures were obtained from the seven patients, all of which were positive for Fusarium spp. (Table 1). Following identification of the third case of F. verticillioides on 13 November 2012, the hospital’s infection prevention and control committee decided that strict infection control measures were required urgently. Each day from 13th November to 30th November 2012, three rooms in the internal medicine department were evacuated and disinfected with quaternary ammonium. Simultaneous evacuation of all rooms was not an option, as the internal medicine department is active 24 h/day, four days/week. Equipment and surfaces, storage rooms and medication preparation rooms were also subjected to enhanced disinfection with quaternary ammonium fungicidal compounds, followed by aeration of each disinfected room. An infection control nurse made daily rounds on the internal medicine department to monitor compliance with the recommended infection control practices. Patients were moved back to their rooms after 48 h.

All surveillance specimens, blood cultures and environmental samples were negative for Fusarium spp. Several random samples from the suction tubes in the internal medicine department and
povidone-iodine solution bottles used for skin disinfection were negative for contaminants. No other cases of fusarium bloodstream infection were detected after implementation of the infection control measures in the internal medicine department; however, the possibility of factors leading to spontaneous termination of the outbreak cannot be excluded.

Discussion

Fusarium spp. are saprophytic moulds that can be found in soil and air. In addition to local infections, they can also cause invasive fungal infections. Common portals of entry are the skin and the airways. *Fusarium* spp. are usually resistant to antifungal agents, and invasive fusarioses are life-threatening conditions with high mortality rates. *F. verticillioiides* is considered to be a human pathogen, and cases of fusariosis occur sporadically, mainly in immunocompromised patients. To the authors’ knowledge, this is the first study to report a cluster of *F. verticillioiides* bloodstream infections among immunocompetent inpatients.

Six of the seven patients appeared to be immunocompetent, and no characteristic signs of disseminated fusarium infection (e.g. skin lesions, organ involvement) were observed.16 The possibility of a pseudo-outbreak could not be excluded; however, the isolation of *Fusarium* spp. from multiple blood cultures from these patients, connected in space and time, would support the hypothesis of an outbreak. Although it is not possible to propose an unambiguous mechanism for the dispersal of *Fusarium* spp. conidia, it is possible that spores were released from the old floors during building work, settled on room surfaces and materials, and acted as reservoirs for conidia dissemination. The fact that *Fusarium* spp. were not isolated from the surveillance cultures, which were obtained after the third case, does not exclude this possibility as: (1) the air in the ward was not sampled during reconstruction works, or immediately after, to assess the concentration of *Fusarium* spp. conidia at particular points in time before the occurrence of the index case; and (2) surface sampling was performed at a different time under a different ward microclimate, which may have influenced the outcome of the environmental surveillance, causing qualitative and quantitative variations in the concentrations of any fungal spores.17

A nosocomial pseudo-outbreak caused by *F. verticillioiides* was reported in Italy in 1994–1995, but, to the authors’ knowledge, this is the first report of nosocomial *F. verticillioiides* bloodstream infections following reconstruction works.18 Hospital reconstruction works and renovations have been associated with increased risk for nosocomial mould infections, especially among severely immunocompromised patients.19,20 Potential sources of nosocomial fungal pathogens include airborne conidia, although colonization or high air-borne spore concentrations are not necessarily predictive of fungal infection as contaminated intravenous fluids, catheters and hospital water contaminating the hands of healthcare workers have also been implicated.21 Implementation of the recommended infection control measures during reconstruction/building activities in healthcare settings is imperative.22 However, due to budgetary constraints, most of the recommended measures were not taken prior to, or during, the reconstruction works in the study department, which is likely to have led to dispersion of fungal spores in ward areas. Successful control of the fungaemia cases underlines the importance of application of effective control measures, before, during and after construction and demolition activities in healthcare settings.

Conflict of interest statement
None declared.

Funding sources
None.

References

18. Grigis A, Farina C, Symoens F, Nolard N, Goglio A. Nosocomial pseudo-outbreak of *Fusarium verticillioides* associated with...