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Managed and wild bees, whether solitary or social have a

plethora of microbial associations that vary in their influence on

the health of the bees. In this review, we summarise our current

knowledge of aspects of the biology and ecology of bee

associated fungi. The biology of bees that fungi are associated

with are described, and the likely influences on fungal

transmission are discussed. There is a clear disparity in

research on fungi associated with managed compared to wild

bees, leaving gaps in our understanding of fungal pathogen

epidemiology. Translocation of bees to meet global pollination

needs will increase exposure of bees to exotic pathogens.

Thus, filling these gaps is an important step towards mitigating

the impact of fungal diseases in bees.
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Introduction
Historically, fungi that are pathogens of or live in close

association with bees have received very little attention,

and generally are understudied [1��]. When bee associ-

ated fungi are pathogenic, their impact on the host, both

ecologically and economically, varies considerably. Much

of this variation depends on the underlying biological

characteristics of both the host and the fungal pathogen,

both of which influence the transmission potential of the

disease. For example, whether the host bee has a solitary

or social lifestyle, and whether the fungus is an obligate

or opportunistic pathogen (summarised in Figure 1).

The genus Ascosphaera is by far the best studied fungal

group. It consists of 28 species (Table 1), and all are
www.sciencedirect.com 
specialists in the exploitation of bees or their nesting

habitats, probably due to their osmophilic nature [1��].
Whilst many species in this genus are saprophytes of bee

products (larval faeces, nesting materials, or pupal

cocoons [2]), some species of Ascosphaera are obligate

pathogens of the brood of both solitary and social bees,

causing the fungal disease commonly referred to as

‘chalkbrood’ ([3�] and hereafter references therein;

Table 1). In the honey bee Apis mellifera, outbreaks of

chalkbrood caused by the obligate pathogen A. apis are

rarely fatal for the colony; it is regarded as a common

spring disease and most colonies can recover as they grow

stronger over the summer. Apis mellifera colonies vary

genetically in both individual-level and group-level sus-

ceptibility [3�], and a recommended management strat-

egy is to requeen in order to replace the genetic stock of

the colony [4]. Conversely, outbreaks of chalkbrood

caused by A. aggregata in the alfalfa leafcutting bee,

Megachile rotundata (also known as ragged brood disease),

can cause huge economic losses when this species is

raised commercially for alfalfa pollination [5]. As a solitary

species, management is less straightforward than reque-

ening, and outbreaks in field populations are common and

persistent [6]. A fungal brood disease in A. mellifera
symptomatically similar to chalkbrood is stonebrood,

caused by facultative pathogens from the genus Aspergil-
lus (Figure 1; Table 1). Aspergillus can infect and kill both

larval and adult honey bees as well as many other organ-

isms. It is a much rarer disease than chalkbrood, and

considered of minor importance in apiculture [7]. How-

ever, Aspergillus is a zoonotic pathogen that can cause

aspergillosis in humans, from mild types such as allergic

reactions to true infections of the respiratory system,

primarily in immune-compromised patients or those

already suffering from other respiratory diseases [8].

In this review, we focus specifically on fungal brood

pathogens in both social and solitary bee species. Our

current understanding of the biology of bee associated

fungi varies considerably (Table 1). The attention of the

scientific community towards fungi reflects, to a certain

extent, the level of economic losses to apiculture and

agriculture as a result of pathogenesis. We include infor-

mation on saprophytic fungi because there are several

instances where species thought to be apathogenic in

nature have been shown to be pathogenic when tested in
vitro [9,10,11�]. We summarise our current knowledge of

aspects of the biology of the fungi, the bee species they

attack, and discuss likely influences on fungal transmis-

sion. We also highlight areas where improving our
Current Opinion in Insect Science 2018, 26:105–113
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Figure 1
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Bees collect nutritious pollen and nectar and are themselves a nutritious source for fungal proliferation. Biological characteristics of both the host

bee and the fungus will influence fungal pathogenesis and transmission. There are examples of specialised obligate pathogens like Ascosphaera

apis and opportunistic pathogens like Aspergillus flavus. Adaptation to the bee habitat has evolved within the specialised fungi, for example, spore

structures for optimal dispersal, whereas the opportunistic fungi rely on saprophytic proliferation on various substrates and their ubiquitous

presence. The social bees have an additional line of group defense mechanisms (e.g. hygienic behaviour), however the social lifestyle introduces

the risk of social transmission of fungal spores. Flowers, and nest site reuse are possible disease transmission routes for both social and solitary

bees. Nutritional status, gut microbiota, co-infections as well as environmental and anthropogenic factors can influence the severity of the disease.

The resilience to these factors across the spectrum of bees and fungal parasites is largely unknown and a greater understanding is of paramount

importance for mitigating the effects of disease.
knowledge of fungal pathogen epidemiology could help

to mitigate the effects of disease in bees.

Pathobiology and aetiology of fungal diseases
Ascosphaera spp. and Chalkbrood disease

Pathogenesis by species of Ascosphaera occurs only when

spores are ingested by larvae, and infection proceeds

across the gut lining [1��,3�]. This specific infection route

of a live host is a feature of several species in this genus

because the spores require high levels of CO2 (that are

found in the anaerobic environment of the gut) before

they can germinate [12]. During pathogenesis, the host

larva dies as a result of an invasive mycosis, and spores

form external to (with the exception of A. aggregata, which

form spores under) the cuticle [13]. Not all species are
Current Opinion in Insect Science 2018, 26:105–113 
obligate pathogens; some grow as saprophytes within the

host’s nest sites, on faecal matter, pollen provisions or

nesting material, but some of these have also been shown

to be capable of infection in vitro (Table 1). Ascosphaera
produces its transmission stage as spore ball structures

within a unique double walled sporocyst (e.g. A. apis;
Figure 1), which can persist in the environment for up to

15 years [3�]. There appears to be a close evolutionary

relationship between pathogenic Ascosphaera and their

primary hosts. Narrow host (species or genus) ranges,

and no field records of social bee specialists infecting

solitary bees or vice versa (Table 1), suggest adaptation by

each pathogen to the specific environment of their host.

Pathogenicity by Ascosphaera is always towards larvae; the

adult bees act only as transmission vectors of the fungal
www.sciencedirect.com
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Table 1

Bee associated fungi from five different genera are listed, several are pathogens of bees while others live saprophytically in bee habitats. Their ‘lifestyle’ and their impact on the host,

both ecologically and economically, varies considerably. The ‘recorded host(s)’ of bee associated fungi include both managed and wild bees, they vary in their ‘reproductive

structures’, some have exclusive sexual reproduction while others have both sexual and asexual reproduction. Their ‘Likely transmission routes’ largely depend on the biology of the

host, the fungal lifestyle and anthropogenic influence in managed systems. Many of the fungi’s ‘Recorded geographic distribution’ is from a single record, thus they appear to have a

narrow geographic distribution. Whether this reflects the frequency of studies conducted or is a true sign of host/habitat specialisation requires further study.

Species Recorded hosts Ref # Reproductive structures Lifestyle Likely exposure/transmission

routes

Recorded geographic

distribution

Ascosphaera

A. apis

‘Chalkbrood’

Apis mellifera (primary

host)

[3�] Sporocysts Obligate pathogen of social

bees

Commercial beekeeping

Flower sharing

Honey robbing

Social transmission

Worldwide

Apis ceranae [48] Flower sharing

Honey robbing

Social transmission

Xylocopa californica [49] Flower sharing

Nest site reuse

Bombus nevadensis [14��] Commercial rearing using

contaminated honey bee pollen

Bombus vosnesenskii [14��]
Bombus griseocollis [14��]
Megachile rotundata [11�] Infrequently pathogenic In vitro In vitro assessment

A. acerosa Megachile rotundata [50] Sporocysts Saprophyte of bee cadavers Flower sharing

Nest site reuse

Canada

Megachile macularis [51] Australia

A. aggregata

‘Chalkbrood’ or

‘Ragged brood

disease’

Megachile rotundata

(primary host)

[2,52] Sporocysts Obligate pathogen of solitary

bees

Flower sharing

Nest site reuse

Diseased nest mates during

emergence

Sexual transmission via

contaminated males

Europe/N. America

Megachile pugnata [53] Canada

Megachile relativa [54] Canada

Megachile pacifica [52] Denmark

Megachile

centuncularis

[52] Denmark

Osmia rufa [52] Denmark

Osmia cornuta [51] Australia

Osmia lignaria [51] Australia

Coelioxys rufocaudata [55] Cleptoparasitism Spain

Apis mellifera [11�] Infrequently pathogenic In vitro In vitro assessment n/a

A. asterophora Megachile rotundata [56] Sporocysts Saprophyte Flower sharing

Pollen provisions

Nest site reuse

Diseased nest mates during

emergence

Sexual transmission via

contaminated males

Denmark

[57] Australia

[33] USA

A. atra Megachile rotundata [58,59] Sporocysts Saprophyte of pollen

provisions, pathogenic In vitro

only

Flower sharing

Nest site reuse

Widespread

Apis mellifera [10] In vitro assessment n/a
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Table 1 (Continued )

Species Recorded hosts Ref # Reproductive structures Lifestyle Likely exposure/transmission

routes

Recorded geographic

distribution

A. callicarpa Chelostoma florisomne [2] Sporocysts Saprophyte of nest reeds Unknown Denmark

A. cinnamomea Osmia cornifrons [60] Sporocysts Unknown Unknown Japan

A. celerrima Osmia cornifrons [60] Sporocysts Unknown Unknown Japan

A. duoformis Trigona carbonaria [51] Sporocysts Saprophyte of pollen

provisions

Flower sharing

Social transmission

Australia

Apis mellifera [51] Detected in honey Flower sharing

A. fimicola Osmia rufa [2,52] Sporocysts Saprophyte of larval faecal

pellets

Flower sharing

Nest site reuse

Denmark

Cacoxenus indagator [2,52] Cleptoparasitism

A. flava Megachile spp. [51] Sporocysts Unknown Unknown Australia

A. fusiformis Osmia cornifrons [57,60] Sporocysts Unknown Unknown Japan

A. larvis Megachile rotundata [11�,13,61] Sporocysts Obligate pathogen of solitary

bees

Flower sharing

Nest site reuse

Diseased nest mates during

emergence

Sexual transmission via

contaminated males

Canada

Apis mellifera [11�] Infrequently pathogenic In vitro In vitro assessment n/a

A. major Megachile

centuncularis

[57,62] Sporocysts Saprophyte Flower sharing

Nest site reuse

Widespread

Apis mellifera Flower sharing

A. naganensis Osmia cornifrons [60] Sporocysts Unknown Unknown Japan

A. osmophila Megachile mystaceana [63] Sporocysts Obligate pathogen of solitary

bees

Flower sharing

Nest site reuse

Australia

A. parasitica Osmia cornifrons [60] Sporocyts Saprophyte Unknown Japan

A. pollenicola Megachile rotundata [13] Sporocysts Saprophyte Flower sharing

Nest site reuse

Canada

A. proliperda Megachile

centuncularis (primary

host)

[57,62] Sporocysts Pathogen of solitary bees Flower sharing

Nest site reuse

Denmark

Megachile rotundata [9] Pathogenic In vitro In vitro assessment n/a

Apis mellifera [10] Infrequently pathogenic In vitro

A. scaccaria Leioproctus spp. [64] Sporocysts Obligate pathogen of solitary

bees

Flower sharing

Nest site reuse

New Zealand

A. solina Family Colletidae [51] Sporocysts Unknown Unknown Australia

A. subcuticularis Megachile aethiops [51] Sporocysts Pathogen of solitary bees Flower sharing

Nest site reuse

Australia

A. subglobosa Megachile rotundata [33,65] Sporocysts Saprophyte Pollen provisions

Nest site reuse

USA
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Table 1 (Continued )

Species Recorded hosts Ref # Reproductive structures Lifestyle Likely exposure/transmission

routes

Recorded geographic

distribution

A. tenax Megachile willughbiella [66] Sporocysts Saprophyte Unknown Denmark

A. torchioi Osmia lignaria

propinqua

[67,68] Sporocysts Pathogen of solitary bees Unknown USA

A. variegata Megachile rotundata [13] Sporocysts Saprophyte Unknown Canada

A. verrucosa Osmia californica [60] Sporocysts Saprophyte Unknown Japan

A. xerophila Osmia cornifrons [60] Sporocysts Unknown Unknown Japan

Arrhenosphaera

A. craneae Apis mellifera [16] Sporocysts and asexual

conidia

Obligate pathogen of social

bees

Commercial beekeeping

Flower sharing

Honey robbing

Social transmission

Venezuela

Bettsia

B. alvei ‘Pollen

mold’

Apis mellifera [52,52,69,70] Sporocysts and asexual

conidia

Saprophyte of pollen provision

and beebread

Commercial beekeeping

Flower sharing

Honey robbing

Social transmission

Worldwide

Melipona fasciata [71]

Osmia cornuta [45] Flower sharing

Skoua

S. fertilis Apis mellifera [1��] Naked asci Saprophyte Commercial beekeeping

Flower sharing

Honey robbing

Social transmission

Denmark

Aspergillus (‘Stonebrood’)

A. flavus Apis mellifera [72] Cleistothecia and asexual

conidia

Generalist Saprophyte and

opportunistic pathogen of

immunocompromised hosts

Ubiquitous presence Worldwide

Nomi melanderi [73] USA

A. fumigatus Apis mellifera [7] Worldwide

A. niger Apis mellifera [74,18��] Asexual conidia

Rarely sexual cleistothecia

A. nomius Apis mellifera [18��] Cleistothecia and asexual

conidia

A. oryzae Apis mellifera [74] Egypt

A. phoenicis Apis mellifera [18��] Worldwide

A. tamarii Nomia melanderi [73] USA
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spores [3�]. The only exception to this is the recent

discovery of both vegetative and reproductive stages of

Ascosphaera in adult queens of three bumblebee species

([14��]; Table 1). However, it is likely that this is similar to

an in vitro exposure, that is, the result of commercial mass

rearing protocols where spore contaminated pollen is fed

to colonies [15], rather than an example of a true host-

switch.

Arrhenosphaera, Bettsia, and Skoua

Arrhenosphaera, Bettsia, and Skoua are by far the least

studied bee associated fungi. The genus Arrhenosphaera
only includes one species, A. cranae, which has been

reported only once (at the time of its description) as a

problematic pathogen of A. mellifera ([16]; Table 1). It has

similar aetiology to A. apis but a capacity to proliferate

saprophytically on stored pollen. Bettsia also includes only

one described species, B. alvei and it shares the same

niche as several of the saprophytic Ascosphaera (Table 1).

By contrast to Ascosphaera, both Arrhenosphaera and Bettsia
produce asexual conidia as well as sporocysts [1��].
Recently, another pollen saprophyte was isolated from

honey bee bread, Eramascus fertilis, but after taxonomic

and phylogenetic analyses it was placed in its own genus

and renamed Skoua fertilis [1��]. Even though Bettsia and

Skoua are distantly related to Ascosphaera, they have both

independently evolved unusual (naked) sporocysts,

which suggests convergent evolution of spore dispersal

mechanisms adapted for the bee habitat [1��].

Aspergillus spp. and Stonebrood disease

The primary infection route of Aspergillus is very similar to

that of Ascosphaera, via ingestion of spores, which germi-

nate in the gut leading to an invasive mycosis and host

death. By contrast to Ascosphaera, both adults and larvae

can be infected, and spores can also germinate on, and

mycelia can penetrate, the external cuticle [7]. There are

several species that can cause stonebrood disease ([7];

Table 1), but a key difference to Ascosphaera is that

Aspergillus are primarily saprophytes, occurring almost

ubiquitously in soils, and are only opportunistically path-

ogenic (Figure 1; Table 1). Prevalence of stonebrood

disease is low as infection occurs only in colonies weak-

ened by other factors, such as poor pollen diets [17]. In
vitro assays on larvae show the virulence of Aspergillus is

high, both with respect to speed of kill and sporulation

when compared to Ascosphaera apis [18��], which suggests

that the low disease prevalence in the field is due to other

interacting factors. Vectoring by Varroa mites has been

suggested as a potential transmission route (Figure 1), as

A. flavus conidia appear to be carried readily on Varroa
[19], but the effect of Varroa on stonebrood disease

epidemiology remain to be tested.

Bee life history and fungal transmission
All the pathogenic fungi of bees described here have a

semelparous life-history, producing transmission
Current Opinion in Insect Science 2018, 26:105–113 
propagules only after the host has died and after the

mycelia have penetrated the host cuticle from the inside.

This has important consequences for disease transmission

potential. One of the biggest factors influencing transmis-

sion is the life history of the bee, primarily because this

determines what happens to the resulting sporulating

larval cadaver. The diversity and abundance of fungi is

greater in solitary bee nests than in eusocial bees ([1��];
Table 1). Social species such as A. mellifera can use group

resistance mechanisms, such as hygienic behaviour, to

remove the diseased brood ([20]; Figure 1), although this

also has the potential to increase social transmission of

spores [21]. However, use of the same nest site for several

months or years can provide a more stable environment

for fungal growth promoting disease persistence (Fig-

ure 1). Conversely, solitary bees are active for relatively

shorter periods (as short as three weeks per year [22]),

restricting the opportunity for fungal growth and trans-

mission. This may be a reason that many of the solitary

bee associated fungi are saprophytes (Table 1), because

the nesting materials may often be more persistent than

the bees themselves. The overwintering status of the bee

species is also important. For example, alfalfa leafcutting

bees nest in existing cavities in wood or hollow reeds and

overwinter as larvae, providing an extended opportunity

for within-host growth by fungi. In the early summer,

emerging adults frequently must chew through dead,

diseased siblings that block their exit, becoming contam-

inated with chalkbrood spores in the process and prolif-

erating the disease [23]. A shared trait among bees is the

use of a nest to rear offspring. Nest site reuse, either due

to the overlapping generations of eusocial species, or natal

nest preference in solitary species [24], is therefore a core

transmission route for fungal spores (Figure 1; Table 1).

Similarly, all bees collect pollen and nectar to rear their

offspring, making flower sharing another core transmis-

sion route ([25,26]; Figure 1; Table 1).

Host and microbiome effects on disease
prevalence
Apis mellifera shows significant genetic variation in resis-

tance to chalkbrood at both the individual and colony

level [4,27], but co-infection by multiple strains [28] or

species [10,11�] of Ascosphaera can alter the outcomes of

infection by augmenting virulence. There is evidence

emerging that resistance to organisms whose key route of

infection is via the gut can also be augmented by the

resident gut microbiota ((e.g. [29]); Figure 1), and there is

some evidence to suggest the honey bee gut microbiota

may have antifungal activity [30]. In both honey bees and

bumblebees, there appears to be a consistent gut micro-

biota consisting of nine different phylotypes [31]. How-

ever, there are also microbial symbionts in the hive of

honey bees that appear important in the defence against

fungal pathogens, particularly Ascosphaera. In honey bees,

the primary mechanism of resistance to chalkbrood is

hygienic behaviour (Figure 1), a secondary mechanism is
www.sciencedirect.com



Fungal diseases of bees Evison and Jensen 111
the addition during pollen collection and storage by bees

of antagonistic moulds (mostly species belonging to the

Mucorales and Aspergilli) and Bacillus spp. that inhibit

the pathogen [32]. Very little is known about the gut

microbiota of solitary species. However, although there is

no evidence to suggest their gut microbiota are protective

against fungal pathogens, it has been shown that the two

can influence each other ([33]; Figure 1). To understand

the epidemiology of fungal diseases it therefore appears

increasingly pertinent to consider the entire community

of microorganisms in which single pathogens operate, an

approach that is also increasingly used in issues of human

health and disease [10,34], as non-lethal synergists can

have huge impacts on the evolution of the host–pathogen

interactions [35]. Bees can also defend their provisions

and larvae with a chemical arsenal. For example, colletid

and halictid bees apply a dense lining to their nest using

secretions from the Dufour’s gland comprising a mix of

terpenoid esters and macrocyclic lactones [36], which may

inhibit microbial invasion [37,38]. Some bees use propolis

to line their nest [34], which is known to have antimicro-

bial properties, against Ascosphaera at least [39]. The

antimicrobial effectiveness of propolis varies by region

suggesting that there are certain bee-preferred resinous

plants, collected by bees to aid in defence against fungi

[40��]. Host nutrition (Figure 1) is central to many of

these processes, as nutritional limitation has a plethora of

negative effects, including immunocompromising both

larvae and adults [41], and increasing susceptibility to

opportunistic pathogens such as Aspergillus [17]. Good

host nutrition appears to require floral diversity, which

extends to the microbial ecology of the entire colony in

social species; polyfloral pollen mixtures increase resis-

tance of honey bee larvae to Aspergillus [17], and honey

bee colonies that have a higher concentration of symbiotic

microbes in the pollen fed to their larvae are less suscep-

tible to chalkbrood ([42]; Figure 1).

Conclusion
Our current understanding of the biology of bee associ-

ated fungi varies considerably (Table 1), but there

appears to be bias in the attention of the scientific

community towards fungi that are associated with eco-

nomic losses to apiculture and agriculture. The historical

research focus on honey bees should shift to include wild

and solitary species, because they tend to be less resilient

to environmental stressors (including pathogens; [43])

their importance as pollinators is increasingly evident

[44], and they appear to act as a reservoir of honey bee

disease [45]. As solitary bees are relied on more for

commercial pollination [44], denser aggregations lead

to higher prevalence of disease [46]. In addition, polli-

nators are regularly moved trans-continentally to meet

global pollination needs, leading to transport of their

associated fungal pathogens [47��]. As the potential for

exposure to exotic pathogens increases, the potential for

novel host-switching also increases. Therefore, a greater
www.sciencedirect.com 
understanding of the biology and prevalence of fungal

parasites across the spectrum of bees, social and solitary,

native and exotic, is of paramount importance in mitigat-

ing disease.
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